00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066 #ifndef CONVERGENCETEST_H_SEP_30_2005
00067 #define CONVERGENCETEST_H_SEP_30_2005
00068
00069 #include <cmath>
00070 #include "meanvariance.h"
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096 inline double NORMSINV(double p)
00097 {
00098 double a[] = {-3.969683028665376e+01, 2.209460984245205e+02,
00099 -2.759285104469687e+02, 1.383577518672690e+02,
00100 -3.066479806614716e+01, 2.506628277459239e+00};
00101 double b[] = {-5.447609879822406e+01, 1.615858368580409e+02,
00102 -1.556989798598866e+02, 6.680131188771972e+01,
00103 -1.328068155288572e+01 };
00104
00105 double c[] = {-7.784894002430293e-03, -3.223964580411365e-01,
00106 -2.400758277161838e+00, -2.549732539343734e+00,
00107 4.374664141464968e+00, 2.938163982698783e+00};
00108
00109 double d[] = {7.784695709041462e-03, 3.224671290700398e-01,
00110 2.445134137142996e+00, 3.754408661907416e+00};
00111
00112
00113 double plow = 0.02425;
00114 double phigh = 1 - plow;
00115
00116
00117 if (p < plow)
00118 {
00119 double q = sqrt(-2*log(p));
00120 return (((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /
00121 ((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1);
00122 }
00123
00124
00125 if (phigh < p)
00126 {
00127 double q = sqrt(-2*log(1-p));
00128 return -(((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5]) /
00129 ((((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1);
00130 }
00131
00132 double q = p - 0.5;
00133 double r = q*q;
00134 return (((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q /
00135 (((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1);
00136 }
00137
00139
00140
00141 class ConvergenceTest
00142 {
00143 public:
00144
00145
00146 ConvergenceTest(const int& numChains, const double& gamma,
00147 const double& epsilonFrac)
00148 : numChains_(numChains), chainTotals_(new double[numChains]),
00149 totalOverAllChains_(0), numSamplesPerChain_(0),
00150 epsilonFrac_(epsilonFrac), gamma_(gamma)
00151 {
00152 memset(chainTotals_, 0, numChains_*sizeof(double));
00153 }
00154
00155
00156 ~ConvergenceTest() { delete [] chainTotals_; }
00157
00158
00159
00160 void appendNewValues(const double* const & values)
00161 {
00162 for (int i = 0; i < numChains_; i++)
00163 {
00164 chainTotals_[i] += values[i];
00165 totalOverAllChains_ += values[i];
00166 }
00167 numSamplesPerChain_++;
00168 }
00169
00170
00171 void appendNewValues(const bool* const & values)
00172 {
00173 for (int i = 0; i < numChains_; i++)
00174 {
00175 chainTotals_[i] += ((double)values[i]);
00176 totalOverAllChains_ += ((double)values[i]);
00177 }
00178 numSamplesPerChain_++;
00179 }
00180
00181
00182
00183 double getConvergenceScore()
00184 {
00185
00186
00187
00188
00189
00190 return getV(sqrt((double)numSamplesPerChain_)*getS()) / numChains_;
00191 }
00192
00193
00194 int getNumSamplesAdded() const { return numSamplesPerChain_; }
00195
00196
00197 static bool checkConvergenceOfAtLeast(ConvergenceTest* tests[],
00198 const int& numTests,
00199 const double& threshold,
00200 const double& fracConverged,
00201 const bool& print=false)
00202 {
00203 if (threshold <= 0) return false;
00204
00205 int numConverged = 0;
00206 int numNotConverged = 0;
00207 int numBad = 0;
00208 for (int f = 0; f < numTests; f++)
00209 {
00210 double score = tests[f]->getConvergenceScore();
00211 if (!finite(score))
00212 numBad++;
00213 else
00214 {
00215 if (score > threshold)
00216 numNotConverged++;
00217 else
00218 numConverged++;
00219 }
00220 }
00221
00222 if (numConverged + numNotConverged == 0)
00223 {
00224 if (print) cout << "All scores were inf or nan!" << endl;
00225 return false;
00226 }
00227 else
00228 {
00229 double frac = ((double)numConverged) / (numConverged+numNotConverged);
00230 if (print) cout << " fraction converged: " << frac << endl;
00231 if (frac >= fracConverged) return true;
00232 else return false;
00233 }
00234 }
00235
00236
00237 private:
00238 double getS()
00239 {
00240 meanVar_.reset();
00241 for (int i = 0; i < numChains_; i++)
00242 meanVar_.appendValue(chainTotals_[i] / numSamplesPerChain_);
00243 return sqrt(meanVar_.getVariance());
00244 }
00245
00246
00247 double getV(const double& sigma)
00248 {
00249 double invNorm = NORMSINV( (gamma_+1)/2 );
00250 double val = invNorm * sigma / epsilonFrac_;
00251 return val*val;
00252 }
00253
00254
00255 private:
00256 int numChains_;
00257 double* chainTotals_;
00258 double totalOverAllChains_;
00259 int numSamplesPerChain_;
00260
00261 double epsilonFrac_;
00262 double gamma_;
00263
00264 MeanVariance meanVar_;
00265 };
00266
00267
00268
00269
00270
00271
00272 #endif