The Alchemy System for Statistical Relational Al
Developer’s Manual

Stanley Kok Parag Singla Matthew Richardson
Pedro Domingos Marc Sumner
Hoifung Poon
Department of Computer Science and Engineering, University of Washington

Jan 15, 2007

1 Introduction

Welcome to the Alchemy developer’s manual. This is designed to help developers improve
and extend Markov logic algorithms in Alchemy. We have strived to make Alchemy as
modular as possible in order to encourage further development of the code. This effort is
ongoing and it should be noted that Alchemy is still in a Beta stage.

This manual, along with the API provided in the package and on the website, should
enable other developers to utilize the Alchemy classes in their own applications as well as
allow them to extend Alchemy itself.

The development of Alchemy was partly funded by DARPA grant FA8750-05-2-0283
(managed by AFRL), DARPA contract NBCH-D030010 (subcontracts 02-000225 and 55-
000793), NSF grant 11S-0534881, ONR grants N00014-02-1-0408 and N00014-05-1-0313, a
Sloan Research Fellowship, and an NSF CAREER Award (both of these to Pedro Domingos).
The views and conclusions contained in this document are those of the authors and should

not be interpreted as necessarily representing the official policies, either expressed or implied,
of DARPA, NSF, ONR, or the United States Government.

2 Notes on Code Design

The C++ source code found in ALCHDIR/src is divided into six directories: util/, parser/,
logic/, learnwts/, learnstruct/ and infer/. Most of the code is found in .h files for
convenient inlining. We avoided the use of polymorphism as much as possible, since virtual
functions are not inlined and we would like to have as much inlining as possible for the code
to run quickly. Most of the .h files have names that are the same as those of the classes they
contain.



2.1 Utilities

The util directory contains “utility” classes. Argument is a class used to parse command line
arguments. Array is a template class representing an array, and is used widely in the code.
HashArray is similar to an Array except that it is backed up by a map so that its elements
are unique. HashList is similar to a HashArray except that it is a list implementation.
In hashint.h and hashstring.h are the definitions of HashArrays containing ints and
strings. ArraysAccessor allows you to iterate through all combinations of items in several
arrays. Both DualMap and ConstDualMap map ints to strings and vice versa. They are
mainly used by Domain in logic/ to hold predicates, types etc. StriInt is a data structure
used by DualMap and ConstDualMap. MeanVariance is used to compute the mean and
variance of a set of numbers. MultDArray represents a multi-dimensional array. PowerSet
generates the powerset of {0...n} except the null set. Timer measures user time in seconds,
and contains a function to print time. util.h is used to contain commonly used functions
that can be shared across modules. Random is a random number generator.

2.2 Parser

In the parser/ directory, follex.y and fol.y are the input files for Flex (lexical analyzer)
and Bison (parser generator) respectively. fol.y contains the grammar rules that are used
to parse first-order logic formulas, and the code that fires when each rule is encountered.
folhelper.h contains our variables and functions that are used in fol.y and follex.y. All
Flex and Bison variables and functions begin with the characters yy. Using a similar conven-
tion, all of our variables and functions that are used in follex.y, fol.y and folhelper.h
begin with zz. The main function is runYYParser () that parses a .mln file and creates an
MLN and Domain (see Section 2.3 below). If you want to add variables to be used in fol.y
or folhelper.h, please see the note at the top of folhelper.h. You can also change the
default weights given to hard clauses by setting HARD_WEIGHT_MULTIPLIER/HARD WEIGHT at
the top of folhelper.h. StrFifoList is a list used in fol.y to hold tokens in the order that
they are extracted by Flex. List0bj contains the algorithm to convert a first-order formula
to CNF. It approximates lisp in its use of lists to represent a prefix form of first-order logic.
replacefolcpp.pl is a perl script that replaces certain code in fol.cpp (generated by Bison
from fol.y) so that it is C++ compliant. If you are using a version of Bison that is less
than 2.0, you may have to uncomment the lines at the bottom of the file. For debugging
purposes, you can set the variables follexDbg (in follex.y) and folDbg (in fol.y) to see
the order in which tokens are extracted, as well as the order in which the grammar rules are
executed.

2.3 Logic

The logic/ directory contains classes related to first-order logic. PredicateTemplate repre-
sents a predicate declaration, while a Predicate is its definition. Likewise for FunctionTemplate
and Function. Observe that the code for Predicate and Function is similar, and we could



have made one the superclass of the other. However, we avoided polymorphism for the
sake of inlining their functions. A Term represents a constant, a variable or a function. A
Predicate contains one or more Terms. Clause is an array of Predicates, and contains the
important functions for counting the number of true groundings of a clause, and for finding
unknown ground clauses. ClauseFactory creates clauses for structure learning. It includes
a function validClause () in which you can specify rules to restrict the kinds of clauses cre-
ated. ClauseSampler contains an algorithm that estimates the number of true groundings of
a clause by sampling the clause’s groundings. It uses TrueFalseGroundingsStore to store
groundings of predicates. MLN represents a Markov Logic Network with a set of Clauses.
clausehelper.h and mlnhelper.h contains the auxiliary data structures used by Clause
and MLN respectively. Database provides the truth values of ground Predicates (ground
atoms), and keeps the truth values of all ground atoms in memory. GroundPreds is a data
structure for holding ground Predicates, and is mainly used for testing purposes. A Domain
contains the declared types, constants, predicates, and functions, and provides information
about them (e.g., the number of constants of a type). It also holds a pointer to a Database.
The class VariableState represents the state of all predicates and clauses while performing
learning or inference. Besides holding all ground predicates and clauses generated from its
MLN and domain, it contains many data structures and indices which allow fast access to
information about the state. It encapsulates the eagerness or laziness of the state (i.e. if all
ground clauses are built upfront or just when needed). This allows us to implement inference
and learning algorithms based on this state without worrying about the differences in a lazy
and an eager implementation.

2.4 Weight Learning

The learnwts directory contains code for learning the weights of formulas. The mainline is
in learnwts.cpp. Table 1 shows the options available when calling learnwts.

If you do not want to print the clauses as their number of true groundings are being
counted during generative learning, you can set the variable PRINT_CLAUSE_DURING_COUNT
to false at the top of learnwts.cpp. learnwts.h contains functions used in learnwts.cpp
that can be shared with other modules. PseudoLogLikelihood computes the (weighted)
pseudo-log-likelihood given the constants in one or more Domains, and clauses in an MLN.
LBFGSB is an optimization routine that finds the optimal weights, i.e., the weights that give
the highest (weighted) pseudo-log-likelihood. DiscriminativeLearner contains the various
algorithms for discriminative learning, currently Voted Percptron, Conjugate Gradient and
Newton’s Method. IndexTranslator is used to translate between clause weights and the
weights that are optimized. It is required when the CNF of a formula is different across
multiple databases, e.g., when the formula has existentially quantified variables, or variables
with mutually exclusive and exhaustive values.



<-i <string>>

[-cw <string>]

[-ow <string>]

[-infer <string>]

[-d [booll]
[-g [booll]
<-o <string>>
<-t <string>>

[-ne <string>]

[-noAddUnitClauses
[bool]l]
[-multipleDatabases
[bool]l]

[-withEM [booll]]

[-dNumIter <integer>]
[-dLearningRate <double>]

[-dMomentum <double>]

Comma-separated input .mln files. (With the -
multipleDatabases option, the second file to the last one
are used to contain constants from different databases, and
they correspond to the .db files specified with the -t op-
tion.)

Specified non-evidence atoms (comma-separated with no
space) are closed world, otherwise, all non-evidence atoms
are open world. Atoms appearing here cannot be query
atoms and cannot appear in the -o option.

Specified evidence atoms (comma-separated with no space)
are open world, while other evidence atoms are closed-
world. Atoms appearing here cannot appear in the -c¢ op-
tion.

Specified inference parameters when using discriminative
learning. The arguments are to be encapsulated in ”” and
the syntax is identical to the infer command (run infer with
no commands to see this). If not specified, MaxWalkSat
with default parameters is used.

Discriminative weight learning.

Generative weight learning.

Output .mln file containing formulas with learned weights.
Comma-separated .db files containing the training
database (of true/false ground atoms), including function
definitions, e.g. ai.db,graphics.db,languages.db.
First-order non-evidence predicates (comma-separated
with no space), e.g., cancer,smokes,friends. For discrim-
inative learning, at least one non-evidence predicate must
be specified. For generative learning, the specified predi-
cates are included in the (weighted) pseudo-log-likelihood
computation; if none are specified, all are included.

If specified, unit clauses are not included in the .mln file;
otherwise they are included.

If specified, each .db file belongs to a separate database;
otherwise all .db files belong to the same database.

If set, EM is used to fill in missing truth values; otherwise
missing truth values are set to false.

[100] (For discriminative learning only.) Number of itera-
tions to run voted perceptron.

[0.001] (For discriminative learning only) Learning rate for
the gradient descent in voted perceptron algorithm.

[0.0] (For discriminative learning only) Momentum term
for the gradient descent in voted perceptron algorithm.




[-queryEvidence [bool]]
[-dRescale [bool]]
[-dZeroInit [bool]l]

[-gMaxIter <integer>]

[-gConvThresh <double>]

[-gNoEqualPredWt [booll]

[-noPrior [bool]l]
[-priorMean <double>]

[-priorStdDev <double>]
[-dMaxSec <double>]
[-dMaxMin <double>]
[-dMaxHour <double>]
[-dPW [bool]]

[-dVP [bool]l]

[-dNewton [bool]l]

[-dCG [bool]]

[-cglambda <double>]
[-cgPrecond [booll]

If this flag is set, then all the groundings of query preds
not in db are assumed false evidence.

(For discriminative learning only.) Rescale the gradient by
the number of true groundings per weight.

(For discriminative learning only.) Initialize clause weights
to zero instead of their log odds.

[10000] (For generative learning only.) Max number of it-
erations to run L-BFGS-B, the optimization algorithm for
generative learning.

[le-5] (For generative learning only.) Fractional change in
pseudo-log-likelihood at which L-BFGS-B terminates.
(For generative learning only.) If specified, the predicates
are not weighted equally in the pseudo-log-likelihood com-
putation; otherwise they are.

No Gaussian priors on formula weights.

[0] Means of Gaussian priors on formula weights. By de-
fault, for each formula, it is the weight given in the .mln
input file, or fraction thereof if the formula turns into mul-
tiple clauses. This mean applies if no weight is given in the
.mln file.

[1 for discriminative learning. 100 for generative learning]
Standard deviations of Gaussian priors on clause weights.
[-1] Maximum number of seconds to spend learning

[-1] Maximum number of minutes to spend learning

[-1] Maximum number of hours to spend learning

[false] (For voted perceptron only.) Per-weight learning
rates, based on the number of true groundings per weight.
[false] (For discriminative learning only) Use voted percep-
tron to learn the weights.

[false] (For discriminative learning only) Use diagonalized
Newton’s method to learn the weights.

[true] (For discriminative learning only) Use rescaled con-
jugate gradient to learn the weights.

[100] (For CG only) parameter to limit step size

[true] (For CG only) precondition with the diagonal Hes-
sian

Table 1: Command line options for learnwts




2.5 Structure Learning

The learnstruct/ directory contains code for the generative learning of MLN structure.
The mainline is in learnstruct.cpp. Table 2 shows the options available when calling
learnstruct.

structlearn.h contains most of the structure learning code. structlearn.cpp con-
tains the code that handles formulas with variables that are existentially quantified, or have
mutually exclusive and exhaustive values.

2.6 Inference

The infer/ directory contains code for performing inference. The mainline is in infer. cpp.
Table 3 shows the options available when calling infer.

infer.h contains functions used in infer.cpp that can be shared with other modules.
GroundPredicate and GroundClause are the counterparts of Predicate and Clause in
logic/. We created separate classes for inference in order to save space since most of the
instance variables in Predicate and Clause are not needed during inference, and infer-
ence requires us to ground the MLN to create a Markov random field that may take up a
lot of memory. MRF represents the Markov random field and contains the code for Gibbs
sampling. GelmanConvergenceTest is used to determine convergence during burn-in, and
ConvergenceTest is used to determine convergence during Gibbs sampling.

All inference algorithms in Alchemy are implemented as subclasses of the abstract class
Inference. Currently, the class hierarchy contains two large classes of inference algorithms:
SAT-solvers and MCMC algorithms. These two classes hold the parameters which are com-
mon among all flavors of SAT-solvers and MCMC algorithms, respectively. SAT and MCMC
are also implemented as abstract classes as they should only serve as superclasses for various
implementations.

‘ Inference ‘
MCKC s5aT UnitP ropagation
GibhsSampler MCSAT SimulatedTempering haxialksat



<-i <string>>

<-o <string>>

<-t <string>>

[-ne <string>]
[-multipleDatabases
[bool]]

[-beamSize <integer>]
[-minWt <double>]
[-penalty <double>]
[-maxVars <integer>]
[-maxNumPredicates

<integer>]
[-cacheSize <integer>]

[-noSampleClauses [bool]]

[-delta <double>]

[-epsilon <double>]

[-minClauseSamples
<integer>]

[-maxClauseSamples
<integer>]

Comma-separated input .mln files. (With the -
multipleDatabases option, the second file to the last one
are used to contain constants from different domains, and
they correspond to the .db files specified with the -t op-
tion.)

Output .mln file containing learned formulas and weights.
Comma-separated .db files containing the training
database (of true/false ground atoms), including function
definitions, e.g. ai.db,graphics.db,languages.db.

[all predicates] Non-evidence predicates (comma-separated
with no space), e.g., cancer,smokes,friends.

If specified, each .db file belongs to a separate domain;
otherwise all .db files belong to the same domain.

[5] Size of beam in beam search.

[0.01] Candidate clauses are discarded if their absolute
weights fall below this.

[0.01] Each difference between the current and previous ver-
sion of a candidate clause penalizes the (weighted) pseudo-
log-likelihood by this amount.

[6] Maximum number of variables in learned clauses.

[6] Maximum number of predicates in learned clauses.

[500] Size in megabytes of the cache that is used to store the
clauses (and their counts) that are created during structure
learning.

If specified, compute a clause’s number of true groundings
exactly, and do not estimate it by sampling its groundings.
If not specified, estimate the number by sampling.

[0.05] (Used only if sampling clauses.) The probability that
an estimate a clause’s number of true groundings is off by
more than epsilon error is less than this value. Used to
determine the number of samples of the clause’s groundings
to draw.

[0.2] (Used only if sampling clauses.) Fractional error from
a clause’s actual number of true groundings. Used to de-
termine the number of samples of the clause’s groundings
to draw.

[-1] (Used only if sampling clauses.) Minimum number of
samples of a clause’s groundings to draw. (-1: no mini-
mum)

[-1] (Used only if sampling clauses.) Maximum number of
samples of a clause’s groundings to draw. (-1: no maxi-
mum)




[-noSampleAtoms [bool]]

[-fractAtoms <double>]

[-minAtomSamples
<integer>]

[-maxAtomSamples
<integer>]

[-noPrior [bool]l]
[-priorMean <double>]

[-priorStdDev <double>]

[-tightMaxIter <integer>]

[-tightConvThresh
<double>]
[-looseMaxIter <integer>]

[-1looseConvThresh
<double>]

[-numClausesReEval
<integer>]
[-noWtPredsEqually
[bool]l]

[-startFromEmptyMLN
[bool]]

If specified, do not estimate the (weighted) pseudo-log-
likelihood by sampling ground atoms; otherwise, estimate
the value by sampling.

[0.8] (Used only if sampling ground atoms.) Fraction of
each predicate’s ground atoms to draw.

[-1] (Used only if sampling ground atoms.) Minimum num-
ber of each predicate’s ground atoms to draw. (-1: no min-
imum)

[-1] (Used only if sampling ground atoms.) Maximum num-
ber of each predicate’s ground atoms to draw. (-1: no
maximum)

No Gaussian priors on formula weights.

[0] Means of Gaussian priors on formula weights. By de-
fault, for each formula, it is the weight given in the .mln
input file, or fraction thereof if the formula turns into mul-
tiple clauses. This mean applies if no weight is given in the
.mln file.

[100] Standard deviations of Gaussian priors on clause
weights.

[10000] Max number of iterations to run L-BFGS-B, the
algorithm used to optimize the (weighted) pseudo-log-
likelihood.

[le-5] Fractional change in (weighted)
likelihood at which L-BFGS-B terminates.
[10] Max number of iterations to run L-BFGS-B when eval-
uating candidate clauses.

[le-3] Fractional change in (weighted) pseudo-log-
likelihood at which L-BFGS-B terminates when evaluating
candidate clauses.

[10] Keep this number of candidate clauses with the highest
estimated scores, and re-evaluate their scores precisely.

If specified, each predicate is not weighted equally. This
means that high-arity predicates contribute more to the
pseudo-log-likelihood than low-arity ones. If not specified,
each predicate is given equal weight in the weighted pseudo-
log-likelihood.

If specified, start structure learning from an empty MLN.
If the input .mln contains formulas, they will be added
to the candidate clauses created in the first step of beam
search. If not specified, begin structure learning from the
input .mln file.

pseudo-log-




[-tryAllFlips [bool]] If specified, the structure learning algorithm tries to flip
the predicate signs of the formulas in the input .mln file in
all possible ways

[-bestGainUnchangedLimit | [2] Beam search stops when the best clause found does not
<integer>] change in this number of iterations.

Table 2: Command line options for learnstruct

All inference algorithms are based on a VariableState (see dir /src/logic/) which en-
codes the state of the propositional variables and clauses. There are two different methods
to build the state: lazily and eagerly. An eager state builds a Markov random field based
on the queries, the MLN and the domain of constants. Inference is then run on the clauses
and variables in the MRF. A lazy state makes the assumption of all variables being false in
the beginning and activates variables and clauses as needed by the inference algorithm. In
sparse domains, this can lead to large savings in memory usage. The laziness or eagerness
of a state is encapsulated in the class VariableState and is set with the constructor.

In addition, all inference algorithms can be instantiated with a seed for the random
number generator, if needed. If the algorithm contains no randomness, this is ignored. The
ability to set the seed is useful when debugging and comparing different parameter settings
of an algorithm.

2.6.1 Implementing a New Inference Algorithm

Any new inference algorithm in Alchemy must fit into the existing class hierarchy (i.e. it must
be a subclass of Inference). Therefore, it must implement the methods init (), infer(),
printProbabilities, printTruePreds() and getProbability (), although it could be that
no initialization is required (see, for example, UnitPropagation). The constructor of the
new class should call the constructor of Inference so that the state and seed are initialized.

Every inference algorithm is called in the same manner in infer /infer.cpp. A VariableState
is initialized and the pointer inference is set to the inference algorithm as specified on
the command line. If a new inference algorithm is added, this should be extended (along
with the command line options) to accomodate the new algorithm, i.e.: inference = new
NewAlgorithm(state, seed, params); where params is a struct to hold the parameters
specific to the new algorithm. Finally, init () and infer() are called which perform the in-
ference and the probabilities (or best state) of the ground atoms are output to file by calling
printProbabilities(). Of course, the header file of the new algorithm must be included
in infer.cpp. The laziness or eagerness of the inference algorithm should be encapsulated in
VariableState.




<-i <string>>
[-cw <string>]

[-ow <string>]

[-m [bool]l]
[-a [bool]l]

[-p [booll]

[-ms [bool]l]
[-simtp [booll]
[-seed <integer>]

[-lazy [booll]
[-lazyNoApprox [bool]]

[-memLimit <integer>]
[-mwsMaxSteps <integer>]
[-tries <integer>]
[-targetWt <integer>]
[-hard [booll]

[-heuristic <integer>]

[-tabulLength <integer>]

Comma-separated input .mln files.

Specified non-evidence atoms (comma-separated with no
space) are closed world, otherwise, all non-evidence atoms
are open world. Atoms appearing here cannot be query
atoms and cannot appear in the -o option.

Specified evidence atoms (comma-separated with no space)
are open world, while other evidence atoms are closed-
world. Atoms appearing here cannot appear in the -c¢ op-
tion.

Run MAP inference and return only positive query atoms.
Run MAP inference and show 0/1 results for all query
atoms.

Run inference using MCMC (Gibbs sampling) and return
probabilities for all query atoms.

Run inference using MC-SAT and return probabilities for
all query atoms

Run inference using simulated tempering and return prob-
abilities for all query atoms

[random] Seed used to initialize the randomizer in the in-
ference algorithm. If not set, seed is initialized from the
current date and time.

[false] Run lazy version of inference if this flag is set.
[false] Lazy version of inference will not approximate by
deactivating atoms to save memory. This flag is ignored if
-lazy is not set.

[-1] Maximum limit in kbytes which should be used for
inference. -1 means main memory available on system is
used.

[1000000] (MaxWalkSat) The max number of steps taken.
[1] (MaxWalkSat) The max number of attempts taken to
find a solution.

[the best possible] (MaxWalkSat) MaxWalkSat tries to find
a solution with weight j= specified weight.

[false] (MaxWalkSat) MaxWalkSat never breaks a hard
clause in order to satisfy a soft one.

[1] (MaxWalkSat) Heuristic used in MaxWalkSat (0 =
RANDOM, 1 = BEST, 2 = TABU, 3 = SAMPLESAT).
[5] (MaxWalkSat) Minimum number of flips between flip-
ping the same atom when using the tabu heuristic in
MaxWalkSat.

10




[-lazyLowState [bool]]

[-burnMinSteps <integer>]
[-burnMaxSteps <integer>]

[-minSteps <integer>]
[-maxSteps <integer>]

[-maxSeconds <integer>]
[-subInterval <integer>]
[-numRuns <integer>]
[-numSwap <integer>]
[-numStepsEveryMCSat
<integer>]
[-numSolutions <integer>]
[-saRatio <integer>]
[-saTemperature
<integer>]

[-lateSa [booll]
[-numChains <integer>]

[-delta <double>]

[-epsilonError <double>]
[-fracConverged <double>]

[-walksatType <integer>]
[-samplesPerTest
<integer>]

<-e <string>>

<-r <string>>

[false] (MaxWalkSat) If false, the naive way of saving low
states (each time a low state is found, the whole state is
saved) is used; otherwise, a list of variables flipped since
the last low state is kept and the low state is reconstructed.
This can be much faster for very large data sets.

[100] (MCMC) Minimun number of burn in steps (-1: no
minimum).

[100] (MCMC) Maximum number of burn-in steps (-1: no
maximum).

[-1] (MCMC) Minimum number of Gibbs sampling steps.
[1000] (MCMC) Maximum number of Gibbs sampling
steps.

[-1] (MCMC) Max number of seconds to run MCMC (-1:
no maximum).

[2] (Simulated Tempering) Selection interval between swap
attempts

[3] (Simulated Tempering) Number of simulated tempering
runs

[10] (Simulated Tempering) Number of swapping chains
[1] (MC-SAT) Number of total steps (mcsat + gibbs) for
every mecsat step

[10] (MC-SAT) Return nth SAT solution in SampleSat
[50] (MC-SAT) Ratio of sim. annealing steps mixed with
WalkSAT in MC-SAT

[10] (MC-SAT) Temperature (/100) for sim. annealing step
in SampleSat

[false] Run simulated annealing from the start in SampleSat
[10] (Gibbs) Number of MCMC chains for Gibbs sampling
(there must be at least 2).

[0.05] (Gibbs) During Gibbs sampling, probabilty that ep-
silon error is exceeded is less than this value.

[0.01] (Gibbs) Fractional error from true probability.

[0.95] (Gibbs) Fraction of ground atoms with probabilities
that have converged.

[1] (Gibbs) Use Max Walksat to initialize ground atoms’
truth values in Gibbs sampling (1: use Max Walksat, 0:
random initialization).

[100] Perform convergence test once after this many num-
ber of samples per chain.

Comma-separated .db files containing known ground atoms
(evidence), including function definitions.

The probability estimates are written to this file.

11




[-q <string>] Query atoms (comma-separated with no space) ,e.g., can-
cer,smokes(x),friends(Stan,x). Query atoms are always
open world.

[-f <string>] A .db file containing ground query atoms, which are are
always open world.

Table 3: Command line options for infer

3 Online Alchemy

For many applications, the end user is not interested in performing learning and/or inference
once in batch mode, but rather requires this for many time steps in an online mode. The class
OnlineEngine in the directory online addresses this issue by performing online inference
and (coming soon) learning. The class is designed to be used by an agent which initializes
the engine with evidence and an MLN. In subsequent time steps, the agent adds, changes
and deletes evidence and query atoms.

3.1 OnlineEngine

The interface of OnlineEngine which the agent can utilize can be found in the Alchemy API.
In this section, we explain, using a small example, how to use the API to perform online
inference.

An OnlineEngine is constructed based on a string containing the options for the under-
lying inference. The form of the string is the same as the options available in the batch mode
executable infer (see Section 2.6). A simple example of an agent exists in the file online.cpp
in the online directory.

After constructing the OnlineEngine, the agent should call the init() method which
initializes the underlying inference procedure. Then, in each time step, the agent asks the
OnlineEngine to perform inference and return the true atoms (if performing MAP infer-
ence) or the atoms with non-zero probability (if performing probabilistic inference). This
is achieved with the infer () method. The agent can then change the evidence and/or
query predicates and inform the OnlineEngine about these changes with the methods
addTrueEvidence(), addFalseEvidence() and removeEvidence(). Evidence to be re-
moved or added needs to be in string form (as in a .db file) and put in a vector of with
elements of type string.

For most agents, it is often the case that the state will not change drastically from one
time step to the next. If this is the case, we don’t want our inference engine to perform full
inference in each iteration. When using MaxWalkSat as the underlying inference procedure,
the OnlineEngine can vary the number of maximum steps which MaxWalkSat will perform.
For time step n, inference begins in the state in which time step n — 1 left off. Therefore,
it is advisable that the agent reduce the maximum number of inference steps after the first
time step by using the setMaxInferenceSteps() method. For probabilistic inference, this

12



option is not available.

References

[1] S. Kok, P. Singla, M. Richardson, and P. Domingos. The Alchemy system for statistical
relational AI. Technical report, Department of Computer Science and Engineering, Uni-
versity of Washington, Seattle, WA, 2005. http://www.cs.washington.edu/ai/alchemy/.

13



