Algorithm 1 DFS

Input: $L_{G,s} = (V, E)$, a lifted hypergraph
Output: $Motif(L_{G,s})$, a motif

$E' \leftarrow \emptyset$
$V' \leftarrow \emptyset$

For each edge set $E \in \mathcal{E}$

 Mark E as NotVisited

Pick an edge set $E_i \in \mathcal{E}$
Pick an edge $e_i \in E_i$

Enqueue $\{(E_i, e_i)\}$ into Queue

Mark E_i as Visited

While Queue $\neq \emptyset$

 Dequeue (E, e) from head of Queue

 $E' \leftarrow E' \cup \{e\}$

For each node v connected by e

 $V' \leftarrow V' \cup \{v\}$

 Let $V_v \in V$ be the node set containing v

 For each edge set $E_j \in \mathcal{E}$ incident to V_v

 If E_j is NotVisited

 Pick an edge $e_j \in E_j$ that is incident to v (an e_j exists by Proposition 1)

 Enqueue $\{(E_j, e_j)\}$ into Queue

 Mark E_j as Visited

Add edges in E' as literals to $Motif(L_{G,s})$

Return $Motif(L_{G,s})$