Proofs of Propositions

We provide below the proofs of our propositions. \(\overline{p} \) denotes the reverse of path \(p \). \(p^r_s \) denotes a path from node \(s \) to a set of nodes \(V \). We begin by proving a lemma that is needed to prove our propositions.

Lemma 1 Let \(v, v' \) and \(s \) be nodes in a ground hypergraph whose nodes are all reachable from \(s \). If \(\text{Sym}_s(v,v') \), then \(v \) and \(v' \) have the same number of \(r \)-hyperedges connected to them.

Proof. Suppose for a contradiction that \(v \) and \(v' \) respectively have \(n \) and \(n' \) \(r \)-hyperedges connected to them, and \(n > n' \). Let \(p^n_s \) be a path from \(s \) to \(v \), \(r_1, \ldots, r_n \) be the \(r \)-hyperedges that are connected to \(v \), and \(V_1, \ldots, V_n \) be the sets of nodes that are connected to \(v \) by its \(r \)-hyperedges. \(V_1, \ldots, V_n \) are all distinct because a ground hypergraph cannot have more than one \(r \)-hyperedge connected to a set of nodes. (An \(r \)-hyperedge corresponds to a true ground atom, and each true ground atom can only appear once in a database.) Note that \(p^n_s = p^n_s r_1 V_1 r_1 V_1 \ldots r_n V_n r^n_n \) is a path from \(s \) to \(v \). We cannot create a path \(p^{n'}_s \) that is symmetrical to \(p \) because \(p^{n'}_s \) can contain at most \(n' < n \) distinct set of nodes that are connected by \(r \)-hyperedges to \(v' \). Hence we arrive at a contradiction that \(v \) and \(v' \) are not symmetrical. \(\square \)

Proposition 1 Let \(v, v' \) and \(s \) be nodes in a ground hypergraph whose nodes are all reachable from \(s \), and \(\text{Sym}_s(v,v') \). If an \(r \)-hyperedge connects \(v \) to a node set \(W \), then an \(r \)-hyperedge connects \(v' \) to a node set \(W' \) that is symmetrical to \(W \).

Proof. Suppose for a contradiction that \(v' \) is not connected by any \(r \)-hyperedge to a node set that is symmetrical to \(W \). Let \(v \) and \(v' \) each be respectively connected by \(n \) \(r \)-hyperedges (by Lemma 1) to node sets \(W_1, \ldots, W_n \) and \(W'_1, \ldots, W'_n \) where \(n \geq 1 \) and \(W_1 = W \). \(\pi_i \) denotes a path from \(s \) to \(W_i \) to \(v \) via \(r \), and then back to \(s \) via the reverse path, i.e., \(\pi_i = p^W_s r v p^W_s \). Let \(\Pi_i = \{ \pi_i \} \) be the set of all such paths. Similarly \(\pi'_i = p^W_s r v' p^W_s \), and \(\Pi'_i = \{ \pi'_i \} \). Let \(Q = \{ \pi_1 \pi_2 \ldots \pi_n \} \) be the set of paths formed by concatenating \(\pi_i \in \Pi_i \). Finally let \(Q = \{ q^1 q^2 \ldots q^m p^r_s \} (m = 1, \ldots, \infty) \) be the set of paths formed by concatenating \(q^j \in Q \), followed by a path from \(s \) to \(v \). Since \(v' \) is symmetrical to \(v \), there exists \(Q' = \{ q^j p^r_s \ldots q^m p^r_s \} \) where \(q^j \in Q' \) such that \(Q' \) is symmetrical to \(Q \). Observe that the \(p^W_s \) prefix of each path in \(Q \) corresponds to the \(p^W_s \) prefix of each path in \(Q' \). Since \(W_1 \) and \(W'_1 \) are not symmetrical, there is a path in \(Q \) that cannot be bijectively mapped to \(Q' \) (or vice versa). Hence \(v \) and \(v' \) are not symmetrical, which contradicts the assumption that they are. \(\square \)

Proposition 2 The maximum value of \(L_{W,C}(X) \) is attained at \(W = W_0 \) and \(C = C_0 \) where \(C_0 \) is the set of all possible conjunctions of positive ground literals that are true in \(X \), and \(W_0 \) is the set containing the globally optimal weights of the conjunctions.

Proof. Suppose for a contradiction \(L_{W_1,C_1}(X) > L_{W_0,C_0}(X) \). First consider \(W_1 \neq W_0, C_1 = C_0 \). This case is not possible because by definition \(W_0 \) are the optimal weights for \(C_0 \). Next consider \(C_1 \neq C_0 \). Each conjunction in \(C_1 \) add all its groundings to a new set \(C_2 \). Each ground conjunction in \(C_2 \) inherits the weight of the conjunction from which it is formed. (If \(C_1 \) contains ground conjunctions, then \(C_1 = C_2 \).) If \(C_2 \) contains fewer conjunctions than \(C_0 \), add these missing ground conjunctions to \(C_2 \) and give them zero weights. \((W_2, C_2) \) thus created is equivalent to \((W_1, C_1) \), and hence \(L_{W_2,C_2}(X) > L_{W_0,C_0}(X) \). Since \(C_2 = C_0 \), we contradict the assumption that \(W_0 \) contains optimal weights. \(\square \)