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Traditionally, machine learning algorithms assume that training data is pro-

vided as a set of independent instances, each of which can be described as a feature

vector. In contrast, many domains of interest are inherently multi-relational,con-

sisting of entities connected by a rich set of relations. Forexample, the participants

in a social network are linked by friendships, collaborations, and shared interests.

Likewise, the users of a search engine are related by searches for similar items and

clicks to shared sites. The ability to model and reason aboutsuch relations is es-

sential not only because better predictive accuracy is achieved by exploiting this

additional information, but also because frequently the goal is to predict whether

a set of entities are related in a particular way. This thesisfalls within the area

of Statistical Relational Learning (SRL), which combines ideas from two tradi-

tions within artificial intelligence, first-order logic andprobabilistic graphical mod-

els, to address the challenge of learning from multi-relational data. We build on
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one particular SRL model, Markov logic networks (MLNs), which consist of a set

of weighted first-order-logic formulae and provide a principled way of defining a

probability distribution over possible worlds. We developalgorithms for learning of

MLN structure both from scratch and by transferring a previously learned model,

as well as an application of MLNs to the problem of Web query disambiguation.

The ideas we present are unified by two main themes: the need todeal with limited

training data and the use of bottom-up learning techniques.

Structure learning, the task of automatically acquiring a set of dependen-

cies among the relations in the domain, is a central problem in SRL. We introduce

BUSL, an algorithm for learning MLN structure from scratch that proceeds in a more

bottom-up fashion, breaking away from the tradition of top-down learning typical

in SRL. Our approach first constructs a novel data structure called aMarkov net-

work templatethat is used to restrict the search space for clauses. Our experiments

in three relational domains demonstrate thatBUSL dramatically reduces the search

space for clauses and attains a significantly higher accuracy than a structure learner

that follows a top-down approach.

Accurate and efficient structure learning can also be achieved by transfer-

ring a model obtained in asourcedomain related to the currenttarget domain of

interest. We view transfer as a revision task and present an algorithm that diagnoses

a source MLN to determine which of its parts transfer directly to the target domain

and which need to be updated. This analysis focuses the search for revisions on

the incorrect portions of the source structure, thus speeding up learning. Transfer

learning is particularly important when target-domain data is limited, such as when

x



data on only a few individuals is available from domains withhundreds of entities

connected by a variety of relations. We also address this challenging case and de-

velop a general transfer learning approach that makes effective use of such limited

target data in several social network domains.

Finally, we develop an application of MLNs to the problem of Web query

disambiguation in a more privacy-aware setting where the only information avail-

able about a user is that captured in a short search session of5–6 previous queries

on average. This setting contrasts with previous work that typically assumes the

availability of long user-specific search histories. To compensate for the scarcity of

user-specific information, our approach exploits the relations between users, search

terms, and URLs. We demonstrate the effectiveness of our approach in the presence

of noise and show that it outperforms several natural baselines on a large data set

collected from the MSN search engine.
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Chapter 1

Introduction

The goal of machine learning is to develop algorithms that allow intelligent

systems to acquire knowledge and improve their performanceautomatically from

experience. The typical assumption made by most machine learning algorithms is

that training data is provided as a set of instances, where each instance is described

as a feature vector, from which the value of a target feature is to be predicted. For

example, in a system for evaluating credit card applications, each training instance

is a credit card applicant, who is described by a vector of features, such as income,

birth date, profession, and address, and the goal is to predict whether or not the ap-

plicant is creditworthy. The crucial assumption made by such feature-vector clas-

sification algorithms is that the instances areindependentof each other. Therefore,

such algorithms view the data as being represented by a single table that contains a

row for each instance and a column for each feature, such thatindividual rows are

independent.

In contrast, many domains of interest are inherently multi-relational, con-

sisting of entities connected by a rich set of relations. Forexample, the participants

in a social network are linked by friendships, collaborations, and shared interests.

Likewise, the users of a search engine are related by searches for similar items and
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clicks to shared sites, which are themselves related by shared topics, keywords, or

by linking to one another. The ability to model and reason about such relations is

essential not only because better predictive accuracy is achieved by exploiting this

additional information, but also because frequently the goal is topredictwhether a

set of entities are related in a particular way. For example,predicting the “friend-

ship” relation allows social networking sites to suggest new friends to their users,

whereas by predicting the “interested in” relation, a search engine can customize its

results for each user. Algorithms that assume a feature-vector representation can-

not be employed for such tasks, in which the data can be viewedas consisting of

multiple tables that describe the properties and relationsof the same set of entities.

For example, in a social networking domain, one table may contain the birth dates,

addresses, and other personal information of users; another table may represent

friendship relationships by listing pairs of friends; and athird table may represent

group memberships by listing person-group pairs.

Statistical relational learning (SRL) (Getoor & Taskar, 2007), a subfield of

machine learning, has made great progress in addressing thechallenge of learning

from suchmulti-relationaldata by combining ideas from two traditions within arti-

ficial intelligence. On the one hand, unlike learning methods that use feature-vector

representations, SRL uses the expressiveness of structured languages, such as first-

order logic or SQL, to represent thestructure, which captures the dependencies and

regularities among the relations in a domain. On the other hand, SRL borrows ideas

from graphical models, such as Bayesian or Markov networks,to impose a proba-

bilistic interpretation over the structure, thus enablingSRL to deal with the noise

2



and uncertainty frequently present in relational domains.

The work in this thesis builds on one particular SRL model, the Markov

logic network (MLN) (Richardson & Domingos, 2006). In an MLN, dependen-

cies among the relations are expressed in first-order logic as a set of possibly con-

tradictory formulae, and the weight attached to each formula determines its rela-

tive importance in the overall model. Intuitively, each formula in an MLN rep-

resents a “rule of thumb” that guides prediction but does nothave to be always

true. There are several advantages to using MLNs that have motivated our choice

of model. First, MLNs are a very expressive and general representation. They are

capable of representing all possible probability distributions over a finite number

of objects (Richardson & Domingos, 2006) and subsume all SRLrepresentations

that can be formed as special cases of first-order logic or probabilistic graphical

models (Richardson, 2004). This set includes several widely used models, such

as probabilistic relational models (Getoor, Friedman, Koller, & Pfeffer, 2001) and

relational Markov networks (Taskar, Abbeel, & Koller, 2002). As a result of this

generality, many of the techniques we present are directly applicable to other SRL

models. Second, the use of first-order logic to express MLN structure is bene-

ficial because, on the one hand, it allows MLN structure learning techniques to

draw inspiration from the rich, decades-long tradition on inductive logic program-

ming (Dz̆eroski & Lavrac̆, 2001); on the other hand, first-order logic provides an

intuitive language in which available background knowledge can be conveniently

encoded by human engineers. Third, MLNs come with a well-maintained code

base (Kok, Singla, Richardson, & Domingos, 2005), whose availability has allowed

3



us to focus on the novel contributions of this thesis, without having to develop a

dedicated framework from scratch.

1.1 Main Themes

The ideas presented in this thesis are unified by two main underlying themes:

1.1.1 Dealing with Limited Training Data

Limited data is a common impediment to successful modeling in machine

learning. In this thesis, we have explored two approaches toovercoming this chal-

lenge. First, we introduce techniques for transfer across multi-relational domains

that enable more accurate learning from limited data. In transfer learning, a model

acquired in a source domain is used to aid learning in a targetdomain that is dis-

tinct from the source but related to it. The use of transfer learning techniques may

be beneficial in three ways: by giving an initial boost to the learner before any

data is observed, by attaining superior performance from less data, and by obtain-

ing more accurate models at the end of learning. Transfer learning in SRL can be

viewed as a way of breaking the independent and identically distributed (i. i. d.)

assumption commonly made in feature-vector learning. The independence aspect

is violated by the fact that in SRL entities can engage in relations; the identically

distributed aspect is broken by transfer, which enables learning from training data

that follows a different distribution from that of the test.

Second, by focusing on one particular problem, Web query disambiguation,

we explore ways in which knowledge about the relations between entities can be

4



(a) (b)

Figure 1.1: Two scenarios of limited data considered in thisthesis. Each node
represents an entity. The shapes inside a node represent itsfeatures, whereas the
edges represent relations. In (a), full knowledge about a single node is provided. In
(b), there is limited knowledge about the node attributes.

used to compensate for the scarcity of entity-specific feature information. The goal

in Web query disambiguation is to determine the intentions of a searcher who enters

a potentially ambiguous query. By exploiting the relationsbetween users, we de-

velop an approach which does not depend on extensive user-specific and potentially

sensitive personal information. Figure 1.1 illustrates two scenarios of limited data

considered in this thesis.

1.1.2 Bottom-Up Learning

Traditionally, learning algorithms in SRL have followed atop-downparadigm

common in probabilistic graphical model learning where a greedy search through

the hypothesis space is conducted by systematically generating a large number of

candidates at each iteration, scoring them according to a probabilistic measure, and
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keeping the most promising ones, from which new candidates are generated at the

next iteration (e.g., Heckerman, 1995). In contrast, the techniques introduced in

this thesis follow abottom-upphilosophy, and take a more data-driven approach,

whereby a close analysis of the available data motivates a smaller number of more

promising candidate hypotheses. Because of this, bottom-up techniques are usu-

ally faster to train. Bottom-up learning is also motivated by the observation that it

frequently leads to more accurate models because the guidance from the data pre-

vents learning from being trapped in local maxima. We have explored two aspects

of this theme: in MLN structure learning from scratch, whereour approach first

summarizes useful features in a novel data structure that then guides the search for

structures; and in transfer of MLN structure, where the datais used to diagnose

a source model, thus narrowing down the search for corrections. The difference

between the top-down and bottom-up paradigms is illustrated in Figure 1.2.

1.2 Thesis Contributions

The goal of this thesis is to address several aspects of learning with MLNs:

structure learning, transfer learning, and an applicationto Web query disambigua-

tion, as we describe next in more detail.

1.2.1 Structure Learning

A central problem in SRL isstructure learning,the task of automatically

acquiring a set of dependencies among the relations in the domain. We introduce a

novel approach for learning MLN structure from scratch called BUSL for Bottom-

6



Top-Down Philosophy 

Bottom-Up Philosophy 

Figure 1.2: An illustration of top-down versus bottom-up learning. In top-down
learning, a large number of candidate hypotheses (the gray circles) are generated,
and the data is used only to evaluate these candidates. In bottom-up learning, the
data is used also to drive the generation of hypotheses; as a result, a smaller number
of the more promising candidates is generated.

Up Structure Learning. Our approach breaks away from the top-down paradigm

and instead proceeds in a more bottom-up fashion by first constructing aMarkov

network template, a variablized Markov network, whose nodes consist of chains of

one or more literals and serve as clause building blocks. TheMarkov network tem-

plate is used to restrict the search space for clauses by requiring that all literals in a

clause be part of a clique in the template. This restriction is motivated by the obser-

vation that the clauses in an MLN define functions over the cliques of the Markov

network that is obtained by grounding the MLN for a particular domain. Our exper-

iments in three real relational domains demonstrate that this approach dramatically

reduces the search space for clauses and attains a significantly higher accuracy than

a structure learner that follows a top-down approach (Kok & Domingos, 2005).
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1.2.2 Transfer Learning

Accurate and efficient structure learning can also be achieved by transfer-

ring a source model obtained in asourcedomain related to the currenttargetdomain

of interest. For example, because human interactions tend to be similar across con-

texts, a model learned in a domain on social interactions in the movie business is

likely to be effective in a domain about social interactionsin academia. We view

transfer as a revision task and present an algorithm that diagnoses a source MLN to

determine which of its parts transfer directly to the targetdomain and which need to

be updated. This analysis focuses the search for revisions on the incorrect portions

of the source structure, thus speeding up learning. We also demonstrate that when

this revision technique is incorporated in an integrated transfer system that first

maps the source knowledge to the target domain and then revises it, improvements

in the accuracy of learning over learning from scratch can also be obtained.

Transfer learning is particularly important when target-domain data is lim-

ited, such as when data on only a few individuals is availablefrom domains with

hundreds of entities connected by a variety of relations. Weaddress this case, in

which learning from scratch is infeasible, and developSR2LR, a general transfer

learning approach that makes effective use of such limited target data in several

social network domains.

1.2.3 Web Query Disambiguation

We develop an application of MLNs to the problem of Web query disam-

biguation in a more privacy-aware setting where the only information available

8



about a user is that captured in a short search session of 5 to 6previous queries

on average. This setting contrasts with previous work that typically assumes the

availability of long user-specific search histories, and isof significant practical im-

portance for users who want a personalized experience but are wary of having long

histories of their searches be recorded by the search engine. To compensate for the

scarcity of user-specific information, our approach exploits the relations between

users, search terms, and URLs, and uses a hand-coded structure, over which weights

are learned in an online fashion. We demonstrate the effectiveness of our approach

in the presence of noise and show that it outperforms severalnatural baselines on a

large data set collected from the MSN search engine.

1.3 Thesis Roadmap

In the next chapter, we start with a discussion of the background on which

the contributions of this thesis build. Chapter 3 discussesour work in transfer learn-

ing by describing two algorithms—RTAMAR andSR2LR. Chapter 4 describes our

algorithm for learning the structure of MLNs from scratch ina bottom-up way. In

Chapter 5, we develop an approach to the problem of Web query disambiguation

and demonstrate how relational information can be exploited to compensate for a

limitation on the amount of user-specific data. Chapter 6 describes future directions,

and Chapter 7 concludes.
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Chapter 2

Background

The work in this thesis is in the area of Statistical Relational Learning (SRL)

(Getoor & Taskar, 2007), which builds upon two major traditions within artificial

intelligence—logical models, and probabilistic graphical models. In this chapter

we give a brief overview of the necessary background in thesetwo areas and then

describe in detail Markov logic networks (Richardson & Domingos, 2006), the spe-

cific SRL model upon which we build. Later chapters will introduce related work

specific to their content.

2.1 First-Order Logic

First-order logic provides an expressive language for describing the fea-

tures and relations that hold in an environment. It distinguishes among four types of

symbols—constants, variables, predicates, and functions(Russell & Norvig, 2003).

Constants describe the objects in a domain and can have types. For example, a do-

main may contain the constantsjack and jill of type person andmale and

female of type gender. Variables act as placeholders to allow for quantification.

Predicates represent relations in the domain, such asWorkedFor . Function sym-

bols represent functions over tuples of objects. The arity of a predicate or a function
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is defined as the number of arguments it takes. These arguments can also be typed,

thus restricting the type of constant that can be used. We will denote constants

by strings starting with lower-case letters (i.e.jill ), variables by single upper-

case letters (i.e A, B), and predicates by strings starting with upper-case letters (i.e.

WorkedFor ). Sets of variables will be denoted with bold upper-case letters (i.e.

A,B).

Example 2.1.1.As a running example, we will use the following simplified version

of one of our test domains. The domain contains facts about individuals in the

movie business, describing their profession (Actor(A) or Director(A) ), their

relationships, and the movies on which they have worked. TheWorkedFor(A,

B) predicate specifies that personA worked on a movie under the supervision of

directorB, whereas theCredits(T, A) predicate specifies that individualA

appeared in the credits of movieT . Here A, B, andT are variables.Actor

and Director each have one argument of type person;WorkedFor has two

arguments of type person; andCredits has two arguments where the first one

is of type movieTitle and the second one is of type person. Ourexample domain

has the constantsbrando andcoppola of type person, andgodFather of type

movieTitle.

A term is a constant, a variable, or a function that is appliedto terms.

Ground terms contain no variables. An atom is a predicate applied to terms. A

positive literal is an atom, and a negative literal is a negated atom. We will use the

term gliteral to refer to a ground literal, i.e. one containing only constants, and
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vliteral to refer to a literal that contains only variables. A clause is a disjunction of

positive and negative literals. Ground clauses contain only gliterals. The length of a

clause is the number of literals in the disjunction. A definite clause is a clause with

exactly one positive literal, called the head, whereas the negative literals compose

the body. A Horn clause is a clause with at most one positive literal. A world is an

assignment of truth values to all possible gliterals in a domain. If the closed-world

assumption is made, only the true gliterals need to be listed; under this assumption

all unlisted gliterals are assumed to be false. For the remainder of this document,

we will make the closed-world assumption, unless otherwisespecified.

Example 2.1.2.For example,WorkedFor(A, B) is a vliteral, whileWorkedFor

(brando, coppola) is a gliteral. The following clause is definite because it

contains exactly one positive literal:

Credits(T,B)∨¬ Credits(T,A)∨¬ WorkedFor(A, B).

Using the fact thatq∨¬p is logically equivalent top ⇒ q, we can rewrite this

clause in a more human-readable way, without modifying its meaning, as follows:

Credits(T, A)∧ WorkedFor(A, B)⇒ Credits(T,B).

Note that every definite clause of length at least 2 can be rewritten as a con-

junction of positive literals that serve as the premises (the body) and a conclusion

consisting of a single positive literal (the head).

One possible grounding of the above clause is:
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Credits(godFather, brando)∧ WorkedFor(brando, coppola)⇒

Credits(godFather,coppola).

In fact, we can rewrite any clause as an implication. Consider, for example,

the following clause, which is neither Horn, nor definite because it contains more

than one positive literal:

Actor(A) ∨¬ Credits(T, A)∨ Director(A)

This clause can be rewritten as an implication in several ways, depending

on what literal we would like to serve as the conclusion:

¬Actor(A) ∧ Credits(T, A)⇒ Director(A)

Credits(T, A)∧¬ Director(A)⇒ Actor(A)

¬ Actor(A) ∧¬ Director(A)⇒ ¬ Credits(T, A)

We will call the literals to the left of the implicationpremisesor antecedents.

The literal on the right of the implication will be called theconclusion. These

implication rewrites will be helpful in Section 3.2.

2.2 Inductive Logic Programming

Inductive logic programming (ILP) is an area within machinelearning that

studies algorithms for learning sets of first-order clauses(Lavrac̆ & Dz̆eroski, 1994).

13



Usually, the task is to learn rules for a particular target predicate, such asWorkedFor ,

given background knowledge. This background knowledge mayconsist either of

general clauses, or, more commonly, of a list of the true gliterals of all predicates

in the domain except the target predicate. The negative and positive examples are

provided by the true and false gliterals of the target predicate (i.e. in our case

WorkedFor ). The form learned rules can take is frequently restricted by demand-

ing that they be definite clauses (e.g., Richards & Mooney, 1995), or by allowing

the user to impose some other declarative bias (e.g., De Raedt & Dehaspe, 1997).

By performing techniques such as resolution on the learned clauses, new examples

can be classified as positive or negative.

2.2.1 Top-Down ILP

Top-down ILP algorithms (e.g., Quinlan, 1990; De Raedt & Dehaspe, 1997)

search the hypothesis space by considering, at each iteration, all valid refinements

to a current set of candidate hypotheses. These candidates are then evaluated based

on how well they cover positive examples and exclude negatives, a set of well-

performing ones is greedily selected, and the process continues with the next iter-

ation. In addition to classification accuracy, several other heuristics for scoring, or

evaluating, candidates have been used. For example, FOIL uses an information the-

oretic measure of the information gained by adding a literalto a candidate clause

(Quinlan, 1990). CLAUDIEN uses a measure that takes into account the length of

the clause (De Raedt & Dehaspe, 1997). In summary, top-down ILP techniques use

the data only to evaluate candidate hypotheses but not to suggest ways for forming
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new candidates.

2.2.2 Bottom-Up ILP

Bottom-up ILP algorithms start with the most specific hypothesis and pro-

ceed to generalize it until no further generalizations are possible without covering

some negative examples (Lavrac̆ & Dz̆eroski, 1994). For example, the initial hy-

pothesis may be a set of rules where each rule’s premises are simply a conjunction

of the true gliterals in the background knowledge, and the conclusion is one of the

positive examples. One way of generalizing this initial setof clauses is via the

technique ofleast general generalization(LGG) (Plotkin, 1970), which can be in-

tuitively understood as the most cautious, or conservative, generalization. The tech-

nique of LGG is appealing also because it provides a principled way of dealing with

functions. One popular ILP system that uses LGG isGOLEM (Muggleton & Feng,

1992). LGG has also been used by Thomas (2003) to develop an algorithm that

extracts information from hypertext documents.

An alternative method for bottom-up ILP is known as inverse resolution

(Lavrac̆ & Dz̆eroski, 1994), in which the basic idea is to start from a positive ex-

ample in the data and attempt to construct rules from which the example can be

derived using resolution. The LOGAN-H algorithm (Arias, Khardon, & Maloberti,

2007) generates clause candidates in a similar way, but rather than proposing new

clauses based on the positive examples, it uses the negativeexamples. Given a neg-

ative example, it generates the set of all Horn clauses, suchthat the antecedents

consist of all true statements in the example, and the conclusion is a fact that isnot
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true in the given example. LOGAN-H then uses a novel generalization procedure

that modifies not just the antecedents of a Horn clause, but also the set of possible

conclusions. Positive examples are used only for removing clauses with incorrect

conclusions.

In summary, bottom-up ILP algorithms take stronger guidance from the

data, which is also used toproposeclause candidates. This is in contrast with

top-down algorithms, which use the data only to evaluate candidate clauses.

2.2.3 Hybrid Approaches

Hybrid approaches, (e.g., Zelle, Mooney, & Konvisser, 1994; Muggleton,

1995), aim to exploit the strengths of top-down and bottom-up techniques while

avoiding their weaknesses. Because bottom-up techniques generalize from single

examples, they are very sensitive to outliers and noise in the training data; how-

ever, because many bottom-up techniques employ LGGs, they are better-suited for

handling functions. Similarly, top-down techniques can better make use of general

background knowledge to evaluate their hypotheses, but thegreedy search through

the hypothesis space can lead to long training times.

For example, Zelle et al. (1994) present an approach, CHILLIN , that suc-

cessfully improves accuracy over both a purely top-down anda purely bottom-up

learner by combining ideas from these two paradigms. CHILLIN uses LGGs to form

initial clauses and refines them further by searching for additional antecedents in a

top-down way, as well as inventing new predicates that are necessary in order to

express the target concept concisely.
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Relational pathfinding (RPF), developed by Richards and Mooney (1992),

is another hybrid approach to clausal discovery. RPF views the relational domain

as a hypergraphG in which the constants are the vertices and a set of constantsare

connected by a hyperedge if they appear together in a true gliteral. Intuitively, RPF

forms definite clauses in which the head is a particular true gliteral of the target

predicate, and the body consists of gliterals that define a path in the relational graph

G between the constants in that gliteral. These clauses are then variablized. More

specifically, RPF searchesG for an alternate path of length at least 2 between a

set of constants{c1, . . . , ca} connected by a hyperedge, wherea is the arity of the

target predicate. If such a path is found, it is transformed into a clause as follows.

First, anegativeliteral is created for each predicate that labels a hyperedge in the

path and is grounded with the constants connected by this hyperedge. In addition, a

positiveliteral is constructed in this way for the hyperedge connecting {c1, . . . , ca}.

The resulting clause is a disjunction of these literals withconstants replaced by

variables. This is the bottom-up part of the process. Hill-climbing search, which

proceeds in a top-down fashion, is used to further improve the clauses by possibly

adding unary predicates.

Example 2.2.1.Suppose Figure 2.1 lists all true facts in the domain. Figure2.2

shows the relational graph for this domain, in which all predicates are of arity at

most two. The highlighted edges form an alternative path betweenbrando and

coppola , from which we construct the clause:

WorkedFor(brando,coppola)∨¬Credits(godFather,brando)∨¬Credits(godFather,coppola).
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Director(coppola) Actor(brando)
Credits(godFather, brando) Credits(godFather, coppola)

Credits(rainMaker, coppola) WorkedFor(brando, coppola)

Figure 2.1: Example relational database

WorkedFor
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Figure 2.2: Example of a relational graph

After variablizing, this clause becomes:

WorkedFor(A,B)∨¬Credits(T,A)∨¬Credits(T,B).

This can be rewritten as

Credits(T,A)∧ Credits(T,B)⇒ WorkedFor(A,B).

Hill-climbing search might lead to the addition ofActor(A) and

Director(B) to the conjunction in the antecedents.

2.2.4 Revision of Logic Programs

The ILP algorithms discussed so far all learn from scratch. Sometimes,

however, an initial, somewhat incorrect, first-order logictheory is provided, along
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with training data, and the task is to revise the theory so that it fits the train-

ing data by modifying it as little as possible. This is the problem addressed by

Richards and Mooney (1995). The resulting system, FORTE, can be viewed as a

hybrid revision algorithm. FORTE is a top-down learner in that it uses hill-climbing

search to improve the provided theory. However, rather thanattempting all possi-

ble refinements to the provided clauses, FORTE starts in a bottom-up fashion and

focuses its search by first diagnosing the possible sources of errors in the provided

theory. It does this by attempting to prove positive examples and observing where

the clauses fail. These points of failure are marked as revision points and are the

only places in the original theory where attempts for improvements are made.

More recently, Goldsmith and Sloan (2005) present revisionalgorithms for

restricted classes of Horn clauses. They give an algorithm for the case of depth-

one acyclic Horn clauses in which variables that occur as a head in a clause do not

appear in the body of any other clause. A second algorithm deals with the restricted

case of Horn clauses with unique heads. The introduction of these subclasses of

Horn clauses, allows the authors to give theoretical guarantees of the efficiency of

their algorithms.

As we will discuss in Section 3.1.4, revision algorithms canbe used for

transfer learning where the initial first-order logic theory is learned in a previous

domain, rather than being provided by a human.

All the approaches discussed in Section 2.2 result in the construction of

first-order theories. Even though this representation is highly expressive, it is not

well-suited to modeling in uncertain domains and cannot provide estimates of the
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probability that a certain fact is true. Next, we turn to an overview of probabilistic

graphical models, which provide an important step towards modeling uncertainty.

2.3 Probabilistic Graphical Models

Probabilistic graphical models provide a compact way of representing a

joint probability distribution over sets of variables. Assuming that each variable

can take on at mostv values, any joint probability distribution can be expressed by

listing the probability for every possible combination of assignments of values to

the variables. If the total number of variables isn, this would require one to specify

vn parameters. Probabilistic graphical models take advantage of the observation

that frequently a given variable is directly dependent on only a small subset of the

variables, and this subset renders it conditionally independent of the rest. Thus,

in a complete listing of probabilities for all possible value combinations, many of

the parameters will have the same value. Probabilistic graphical models avoid this

redundancy by explicitly modeling the conditional independencies in the domain.

The variables are represented as nodes in a graph and the edges indicate dependen-

cies among the variables. Probabilities are computed via a set of functions defined

over the graph. For example, Bayesian networks (Pearl, 1988) are a popular model

represented as a directed acyclic graph, in which the joint probability is computed

using a set of conditional probability functions, one for each node in the graph, that

specify the probability of that node taking a particular value given the values of its

parents in the graph. Another popular probabilistic graphical model are Markov

networks (Pearl, 1988), which, in contrast to Bayesian networks, are represented
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by undirected graphs and are therefore easier to learn because one does not need

to ensure that the resulting graph is acyclic. Next, we describe in detail Markov

networks because they will be important for understanding the work in this thesis.

2.3.1 Markov Networks

A Markov network (Pearl, 1988), also known as a Markov randomfield

(Della Pietra, Della Pietra, & Lafferty, 1997), is represented as an undirected graph

G in which there is a vertex for each variable in the domain. Theinterpretation of

G is that each variableX is conditionally independent of all other variables, given

its immediate neighbors. Because of its importance, the setof immediate neighbors

of X is called aMarkov Blanketof X and we will denote it with MBX .

The probability distribution defined by a Markov network is described by

a set of nonnegative functionsgi(Ci) whereCi consists of the variables in thei-th

maximal clique ofG. The probability of assigning particular valuesx to the set of

variablesX in G (with the cliques having valuesci) is:

P (X = x) =

∏

i gi(ci)
∑

y

∏

i gi(ci)
(2.1)

The function in the denominator, known as thepartition function, simply sums over

the values of the numerator for all possible value assignments to the variables and

serves as a normalizing term. Intuitively, it is possible torepresent a probability dis-

tribution that preserves the conditional independencies captured byG as a product

of functions over only the cliques ofG because a variable only directly influences its

neighboring variables. This intuition has been formalizedas the Hammersley Clif-

ford Theorem (Hammersley & Clifford, 1971), which states that if P is a strictly
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positive probability distribution (i.e. every event has some chance of happening),

then it can be expressed as a product of functions over the cliques of a graphGP if

and only if every conditional independence implied by the structure ofGP exists in

P .

Markov networks are most commonly represented as log-linear models where

the functionsgi(Ci) take the formexp(λifi(Ci)). Theλi-s are called weights, and

thefi-s are called features. With this formulation, Equation 2.1can be rewritten as

follows:

P (X = x) =
exp (

∑

i λifi(Ci))
∑

y exp (
∑

i λifi(Ci))
(2.2)

Apart from their convenience, log-linear models are desirable also because it can

be shown that if such a model is used, optimizing the weights in order to maxi-

mize the data likelihood, leads to the model with the highestentropy (Berger, 1996;

Della Pietra et al., 1997).

2.3.2 Learning of Markov Networks

If the features are given, one effective way of learning the weights is by

using gradient descent because, for fixed features, optimization of the weights is

over a convex space (Della Pietra et al., 1997). One common approach to learning

the features of Markov networks, also known asstructure learning, is by proceed-

ing in iterations where in each iteration the feature that gives the best improve-

ment in data fit is greedily added. For example, Della Pietra et al. (1997) choose

the feature that gives the largest decrease in Kullback-Leibler divergence between

the empirical distribution of the data and the distributionrepresented by the cur-
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rent model. It is also common to add a term that penalizes complex models (e.g.,

Lee, Ganapathi, & Koller, 2007). These types of approaches are feature-centricin

that they focus on selecting the features that give the best immediate advantage,

without considering the underlying graph structure and theimplied conditional in-

dependencies among the variables.

An alternative approach to learning Markov networks is to proceed in a

graph-centricway by first focusing on establishing a graph structure that asserts

the existing conditional independencies among the variables. One such algorithm,

which we will use in Chapter 4, is the Grow-Shrink Markov Network (GSMN) algo-

rithm by Bromberg, Margaritis, and Honavar (2006). For eachvariableX, GSMN

goes through two stages—grow and shrink. In the grow phase, the algorithm incre-

mentally constructs the Markov blanket, MBX , of each variableX. Initially MB X

is empty. The algorithm goes through all other nodes and at each iteration, uses the

χ2 test to determine whetherX andY are conditionally independent given MBX ,

whereY is the current potential addition to MBX . If the two variables are not condi-

tionally independent,Y is added to MBX . In the shrink phase, GSMN goes through

each nodeY ∈ MBX and attempts to remove it by testing whetherX andY are

conditionally independent given MBX \Y . After going through the grow and shrink

stages for each node, GSMN enters a collaboration phase in which the algorithm

ensures that for all pairs of nodesX andY , if Y ∈ MBX , thenX ∈ MBY .

Graph-centric algorithms for learning of other probabilistic graphical mod-

els include SGS and PC (Spirtes, Glymour, & Scheines, 2001) and the algorithm of

Margaritis and Thrun (2000), all of which learn Bayesian networks based on inde-
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pendence tests among the variables, as well as the approach of Abbeel, Koller, and Ng

(2006), which constructs Markov blankets using conditional entropy.

Probabilistic graphical models can effectively representprobability distri-

butions over a set of variables. However, they can capture dependencies only over

a fixed set of (propositional) variables and cannot concisely model generally valid

relationships that hold over large groups of objects. Next,we turn to a short de-

scription of statistical relational learning, which aims at overcoming this problem

by incorporating ideas from first-order logic, while still maintaining the advantages

of probabilistic graphical models.

2.4 Statistical Relational Learning

Statistical relational learning (SRL) (Getoor & Taskar, 2007) combines ideas

from first-order logic and probabilistic graphical models to develop learning mod-

els and algorithms capable of representing complex relationships among entities in

uncertain domains. As opposed to traditional classification where it is assumed that

each testing instance is independent of the rest, SRL is bestsuited to situations in

which the entities to be classified are interrelated and the label of one affects the

classification of the remaining ones in some non-trivial way. Moreover, SRL ad-

dresses the case where learning occurs from multi-relational data, and thus training

instances have varying numbers of entities and relations.

Some popular SRL models include probabilistic relational models (PRMs)

(Getoor et al., 2001) and Bayesian logic programs (BLPs) (Kersting & De Raedt,
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2001), which are both relational analogs to Bayesian networks; as well as rela-

tional Markov networks (RMNs) (Taskar et al., 2002) and Markov logic networks

(Richardson & Domingos, 2006), which are relational analogs to Markov networks.

In the remainder of this section, we will describe in detail Markov logic

networks, which are the SRL model on which this thesis builds. The choice of this

model is motivated by the fact that it is highly expressive and subsumes all SRL

models that can be formed as special cases of first-order logic and probabilistic

graphical models (Richardson, 2004).

2.4.1 Markov Logic Networks

Markov logic networks (MLNs), introduced by Richardson andDomingos

(2006), consist of a set of first-order clauses, each of whichhas an associated

weight. MLNs can be viewed as relational analogs to Markov networks whose fea-

tures are expressed in first-order logic. In this way MLNs combine the advantages

of first-order logic with those of probabilistic graphical models while avoiding the

drawbacks of the two representations. In particular, the expressive power of first-

order logic enables MLNs to represent complex general relationships and to reason

about variable numbers of entities using the same model. On the other hand, be-

cause the first-order logic features are embedded in the framework of probabilistic

graphical models, MLNs avoid the brittleness of pure first-order logic by making

worlds that violate some of the clauses less likely but not altogether impossible.

Next, we provide a formal description of MLNs. LetX be the set of all

propositions describing a world (i.e. these are all possible gliterals that can be
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0.7 Actor(A)⇒ ¬Director(A)
1.2 Director(A)⇒ ¬WorkedFor(A, B)
1.4 Credits(T, A)∧ WorkedFor(A, B)⇒ Credits(T,B)

Figure 2.3: Simple MLN for the sample domain

formed by grounding the predicates with the constants in thedomain),F be the set

of all first-order clauses in the MLN, andwi be the weight associated with clause

fi ∈ F. Let Gfi
be the set of all possible groundings of clausefi with the constants

in the domain. Then, the probability of a particular truth assignmentx to X is given

by the formula (Richardson & Domingos, 2006):

P (X = x) =
exp

(

∑

fi∈F
wi

∑

g∈Gfi

g(x)
)

∑

y exp
(

∑

fi∈F
wi

∑

g∈Gfi
g(y)

) (2.3)

The value ofg(x) is either 1 or 0, depending on whetherg is satisfied. Thus

the quantity
∑

g∈Gfi
g(x) simply counts the number of groundings offi that are

true given the current truth assignment toX. The denominator is the normalizing

partition function. Intuitivelywi determines how much less likely is a world in

which a grounding offi is not satisfied than one in which it is satisfied. The first-

order clauses are commonly referred to asstructure. Figure 2.3 shows a simple

MLN that provides an example for our simplified movie domain.Note that the first-

order formulas do not have to have any particular form, e.g.,they are not restricted

to being definite.

To perform inference over a given MLN, one needs to ground it into its cor-

responding Markov network. As described by Richardson and Domingos (2006),
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this is done as follows. First, all possible gliterals in thedomain are formed, and

they serve as the nodes in the Markov network. The edges are determined by the

groundings of the first-order clauses: gliterals that participate together in a ground-

ing of a clause, are connected by an edge. Thus, nodes that appear together in a

ground clause form cliques. For example, Figure 2.4 shows the ground Markov

network corresponding to the MLN in Figure 2.3 using the constantscoppolaand

brandoof type person andgodFatherof type movieTitle. It is also useful to note

the similarity between equation 2.3 and equation 2.2. MLNs can be considered as

a concise and general way of specifying Markov networks in which there is a fea-

ture for each grounding of each clause, and features that correspond to the same

unground clause have the same weight.

One technique that can be used to perform inference over the ground Markov

network is Gibbs sampling (Richardson & Domingos, 2006). The goal of sampling

is to compute the probability that each of a set of query gliterals is true, given the

values of the remaining gliterals as evidence. Gibbs sampling starts by assigning a

truth value to each query gliteral. This can be done either randomly or by using a

weighted satisfiability solver such as MaxWalksat (Kautz, Selman, & Jiang, 1997)

that initializes the truth values to maximize the sum of the weights. It then proceeds

in rounds to re-sample a value for gliteralX, given the truth values of its Markov

blanket MBX (i.e. the variables with which it participates in ground clauses), using

the following formula to calculate the probability thatX takes on a particular value

x.

P (X = x|MBX = m) =
eSX(x,m)

eSX(0,m) + eSX(1,m)
. (2.4)

27



Here, SX(x,m) =
∑

gi∈GX
wigi(X = x, MBX = m), whereGX is the set of

ground clauses in whichX appears andm is the current truth assignment to MBX .

Efficiency can be improved by including only the query gliterals and those in the

Markov blanket of a gliteral with an unknown value, rather than fully grounding the

MLN (Richardson & Domingos, 2006).

An alternative inference approach is MC-SAT that has been shown to out-

perform Gibbs sampling in both speed and the accuracy of the returned probability

estimates (Poon & Domingos, 2006). In addition, meta-inference techniques have

been developed that improve either memory usage (e.g., Singla & Domingos, 2006)

or inference time (e.g., Mihalkova & Richardson, 2009).

2.4.2 Learning Of Markov Logic Networks

Learning of MLNs can proceed in two ways, discriminatively or genera-

tively. In discriminative training, one or more predicateswhose values will be un-

known at test-time are designated as target predicates, andlearning optimizes the

performance with respect to them, assuming that values for the remaining predicates

will be given. In generative training, all predicates are treated equally. Roughly

speaking, discriminative training is appropriate when it is known ahead of time

what kind of predictions will need to be performed with the learned model, whereas

generative training is appropriate when it is not known ahead of time how the model

will be used so that the learned model needs to capture as manyaspects of a domain

as possible. Detailed studies of the relative advantages ofthe two styles of training

are available (e.g., Liang & Jordan, 2008).
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Figure 2.4: Result of grounding the sample MLN

As with Markov networks, there are two parts to learning an MLN: the

weights and the structure.

Weight Learning: Richardson and Domingos (2006) propose performing gener-

ative weight learning for a fixed set of clauses using L-BFGS (D. C. Liu & Nocedal,

1989), a second-order optimization procedure, to optimizethe pseudo log-likelihood

(Besag, 1986). Several approaches have been proposed for discriminative learn-

ing, where the conditional log-likelihood is optimized instead. The earliest, by

Singla and Domingos (2005), follows a voted-perceptron-like approach (Collins,

2002), where the gradient of the conditional log-likelihood with respect to the
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weight of a given clauseCi is computed as the difference between the number

of true groundings ofCi in the data and the expected number of true groundings

of Ci according to the current weights. Calculating this expectation requires in-

ference over the learned model, and Singla and Domingos (2005) used the num-

ber of true groundings ofCi in the most likely assignment of truth values to ap-

proximate it. In later work, Lowd and Domingos (2007) considered calculating

the expectation by performing a few steps MC-SAT inference,thus obtaining a

contrastive-divergence-like approach (Hinton, 2000). InChapter 5, we will use

this algorithm, which we adapt for online learning. Lowd andDomingos (2007)

also studied more sophisticated techniques, such as the preconditioned scaled con-

jugate gradient algorithm that uses the inverse diagonal Hessian matrix as a pre-

conditioner. Huynh and Mooney (2008) introduce a weight-learning technique that

targets the case of MLNs containing only non-recursive clauses.1 Because of this

special assumption on the structure of the model, their approach can perform exact

inference when calculating the expected number of true groundings of a clause; a

second novelty is the use ofL1 regularization to obtain sparser models in which

many clauses have weight 0. Recently, Huynh and Mooney (2009) have introduced

a discriminative learner that maximizes the margin betweennegative and positive

gliterals in the training data.

Structure Learning: Structure learning is a highly computationally intensive pro-

cess. The first MLN structure learner, due to Kok and Domingos(2005), proceeds

1Non-recursive clauses mention a target predicate at most once.
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in a top-down fashion, employing either beam search or shortest-first search. We

will discuss and compare to the beam search version, which wewill call KD after

its authors. The shortest-first search constructs candidates in the same way but con-

ducts a more complete search, which, however, requires longer training times.KD

performs several iterations of beam search, and after each iteration adds to the MLN

the best clause found. Clauses are evaluated using a weighted pseudo log-likelihood

measure (WPLL)(Kok & Domingos, 2005), an extension of pseudo log-likelihood

(Besag, 1986), that sums over the log-likelihood of each node given its Markov

blanket, weighting it appropriately to ensure that predicates with many gliterals do

not dominate the result. The beam search in each iteration starts from all single-

vliteral clauses. It generates candidates by adding a vliteral in each possible way to

the initial clauses, keeps the bestbeamSize clauses, from which it generates new

candidates by performing all possible vliteral additions,keeps the bestbeamSize

and continues in this way until candidates stop improving the WPLL. At this point,

the best candidate found is added to the MLN, and a new beam search iteration

begins. Weights need to be learned for a given structure before its WPLL can be

computed. KD has been empirically shown to outperform an impressive number

of competitive baselines (Kok & Domingos, 2005). In particular, it performed bet-

ter than several popular inductive logic programming algorithms and also outper-

formed purely probabilistic methods.

At the time of writing of this manuscript, Kok and Domingos (2009) have

just introducedLHL , a new algorithm for MLN structure learning, which, likeBUSL,

presented in Chapter 4, embraces a bottom-up perspective. LHL performs rela-
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tional pathfinding (Richards & Mooney, 1992) on alifted hypergraphconstructed

by clustering the constants in the data; lifting the hypergraph allowsLHL to search

for longer paths thanBUSL in a reasonable amount of time. We discuss the perfor-

mance ofLHL in Chapter 4.

The above two algorithms take a generative approach. Discriminative struc-

ture learners have also been introduced. Huynh and Mooney (2008) use ALEPH

(Srinivasan, 2001), a bottom-up ILP system, to learn non-recursive clauses. They

found that for molecular biology domains in which the clauses serve primarily to

describe complex molecules and tend to be very long, learners such as ALEPH that

have been especially designed to deal with such challenges learn more accurate

structure. Biba, Ferilli, and Esposito (2008) have introduced a discriminative struc-

ture learning algorithm based on iterated local search.
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Chapter 3

Transfer Learning with MLNs

Traditional machine learning algorithms operate under theassumption that

learning for each new task starts from scratch, thus disregarding any knowledge

gained previously. In related domains, thistabula rasaapproach would waste data

and computer time to develop hypotheses that could have beenrecovered faster

from previously acquired knowledge. Transfer learning, also known as learning to

learn (Thrun & Pratt, 1998) or domain adaptation (Blitzer, McDonald, & Pereira,

2006), addresses the problem of how to leverage knowledge from relatedsource

domains in order to improve the efficiency and accuracy of learning in a newtarget

domain (Silver et al., 2005; Banerjee et al., 2006; Taylor, Fern, & Driessens, 2008).

Transfer learning is also one of the most effective techniques for enabling learning

in situations when an adequate amount of training data for the task of interest is not

available.

In this chapter, we present two approaches for transfer of MLN structure.

The first technique improves the speed and accuracy of learning by operating under

the assumption that a substantial amount of data for the target task is provided. The

second technique addresses the challenging scenario when target-domain data is

severely limited. Unlike most work in transfer learning, our contributions address
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the setting of multi-relational data and do not assume that the source and target do-

mains use the same representation. Before presenting our contributions, we review

related work.

3.1 Related Work

Transfer learning algorithms have been demonstrated to improve learning in

a variety of settings. In this section, we discuss related work to provide a glimpse

of the numerous transfer algorithms that have been developed.

3.1.1 Multi-task Transfer Learning

Transfer learning has been studied in two main settings. In the multi-task

setting, the algorithm is presented with all domains simultaneously during train-

ing and thus can build common structure of the learned models. For example,

Caruana (1997) trained neural networks with a shared hiddenlayer on two or more

tasks simultaneously. A related approach is used by Niculescu-Mizil and Caruana

(2005, 2007) for simultaneous training of Bayesian networks. In a similar set-

ting, Ando and Zhang (2005) perform optimization over a set of tasks simultane-

ously to find an optimal parameterization of the hypothesis space, and then opti-

mize a linear predictor from this hypothesis space for the target task. Ando and

Zhang’s algorithm serves as the basis of structural correspondence learning (SCL),

a transfer learning approach that assumes the availabilityof labeled data only in

the source tasks and little or no supervision in the target task (Blitzer et al., 2006).

SCL has been applied to natural language problems such as part-of-speech tagging
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(Blitzer et al., 2006) and sentiment classification (Blitzer, Dredze, & Pereira, 2007)

and operates by inducing a mapping between the feature spaces of the source and

target domains. This mapping is produced by using so-calledpivot features that

behave identically in the source and target tasks; the non-pivot features are mapped

across the two domains if they correlate with many of the samepivot features.

3.1.2 Single-task Transfer Learning

In an alternative transfer setting, tasks are presented to the learner one by

one, and the goal is to improve learning on the current, target, task by utilizing

knowledge acquired in previous learning domains. One of theearliest approaches,

the TC Algorithm by Thrun and O’Sullivan (1996), improves target task perfor-

mance of a nearest-neighbor algorithm by transferring the distance metrics learned

on related problems over the same feature space. An interesting aspect of the TC

algorithm is that, rather than assuming that the previously-encountered tasks are

similar, it autonomously determines task relatedness by using a validation set to es-

timate how likely it is that a distance metric optimized for aprevious task improves

performance on the target task. Bonilla et al. (2006) propose a method for transfer

learning for estimation of distribution algorithms (EDA) in which a solution to an

optimization problem is found by progressively developinga distribution over solu-

tions that estimates the likelihood that a particular solution is optimal. In their work,

transfer is achieved by initializing the EDA algorithm withthe solution distribution

of previously-solved problems. This is done by either combining the predictive dis-

tributions from all previous problems or from thek most similar ones, which are
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found using ak-nearest-neighbor algorithm. Raina, Ng, and Koller (2006)use sev-

eral related source tasks to construct the covariance matrix for a Gaussian prior in

a text classification task.

Transfer learning approaches have also been developed for reinforcement

learning (e.g., Taylor, 2008). For example, Taylor, Stone,and Liu (2005) use the

value function learned in a source task to initialize reinforcement learning in the

target task. Value function transfer is also used by Banerjee and Stone (2007) to

transfer knowledge across game-playing domains by using state features extracted

from look-ahead game trees. Torrey, Walker, Shavlik, and Maclin (2005) propose

extracting advice from the value function learned in the source task, which is then

provided to a reinforcement learner in the target task. Taylor, Whiteson, and Stone

(2007) propose using policies learned in the source task to direct reinforcement

learning in the target task in a more promising direction.

The reinforcement learning community has also studied transfer of rela-

tional models (e.g., Torrey, 2009). In particular, in a series of works, Torrey et al.

have used relational representations to improve the performance of a reinforcement

learning agent in a variety of ways: by using relational macros to learn general

descriptions of successful strategies in the source task (2007); by transferring a Q-

function represented using an MLN (2008); and, most recently, to transfer a policy

represented as an MLN (2009). In related work, Croonenborghs et al. (2007) have

introduced an algorithm that learns relational options to aid relational reinforcement

learning. Guestrin, Koller, Gearhart, and Kanodia (2003) use relational representa-

tions as a vehicle for transfer in planning domains.
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The work most relevant to this thesis concerns transfer across relational do-

mains. Davis and Domingos (2008, 2009) use second-order Markov logic1 to de-

velop DTM, an approach that performs transfer across relational domains that are

potentially very different on the surface by learning second-order “clique templates”

that capture general regularities, useful across a varietyof domains. Second-order

MLNs are crucial in this respect because they provide a representation independent

of the one used in the source task. Another important characteristic ofDTM is that

it uses a special learning procedure in the source task in order to increase the like-

lihood that the acquired knowledge is useful across domains; this is in contrast to

approaches like the ones introduced in this chapter that focus on how to make the

most out of a pre-existing model, learned to maximize performance specifically on

the source task.

3.1.3 Transfer as Mapping

In some cases, successful transfer requires the representation of the source

domain to be mapped to that of the target domain. One possibility is for the human

designer to provide a hand-constructed mapping (e.g., Taylor et al., 2005). A more

widely applicable approach, however, is one that automatically induces a useful

mapping (e.g., Blitzer et al., 2006; Y. Liu & Stone, 2006; Taylor, Kuhlmann, & Stone,

2008). Closest to the research we present in this chapter is the structure-mapping

engine (SME) (Falkenhainer, Forbus, & Gentner, 1989; Forbus & Oblinger, 1990).

1In second-order models, one considers variables over the predicates in the domain, not just over
the constants.
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SME discovers global one-to-one mappings between the relations and entities in

two domains by combining consistent local mappings. Local mappings are formed

by matching structural knowledge between the two domains and require at least

some information on the structure of the target domain, i.e., the dependencies

among its relations. Mappings are evaluated based on a syntactic, structural cri-

terion, calledsystematicity, which does not consider the accuracy of the resulting

inferences in the target data.

Y. Liu and Stone (2006) have adapted SME to perform transfer across re-

inforcement learning tasks whose dynamics are described asqualitative dynamic

Bayesian networks (QDBNs).2 They test their method, which works by automati-

cally mapping the structure of the source and target-task QDBNs, on transfer across

simulated robotic soccer domains.

3.1.4 Transfer as Revision

Transfer learning can also be approached as a revision task,in which the

source knowledge is viewed as a partially correct model thatneeds to be refined.

Revision algorithms have been developed for a variety of learning models. One

such algorithm,FORTE, was described in Section 2.2.4. FORTE has been recently

extended by Duboc, Paes, and Zaverucha (2008) to allow for large speed-ups while

maintaining the accuracy of the revised theories. Paes et al. (2005) extendedFORTE

to allow it to handle Bayesian logic programs (Kersting & De Raedt, 2001). These

FORTE-based algorithms first diagnose the provided model and thenfocus the search

2A QDBN is a dynamic Bayesian network that can have links of different types.
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for revisions on the potentially faulty regions. An analogous approach is used by

Ramachandran and Mooney (1998) for revision of Bayesian networks where the

source networks are instrumented with leak nodes that are then used as indicators

for errors. None of these previous works, however, were applied to transfer learn-

ing.

3.2 RTAMAR : When Target-Domain Data is Sufficient

The problem of transferring the structure of an MLN from a source to a tar-

get domain can be viewed as consisting of two parts. First, inorder to translate the

source structure to the target domain, a correspondence between the predicates of

the source domain and those of the target domain needs to be established. Second,

once the source structure has been translated, it needs to berevised in order to adapt

it to the target domain.

This section focuses on solving the second problem and describes our al-

gorithm for revising the structure of the source MLN when an adequate amount of

data from the target domain is available. The algorithm assumes that the predicates

in the source structure have been mapped to the target domain. This is a safe as-

sumption because this mapping capability was developed by Tuyen Huynh as part

of TAMAR , a complete transfer system (Mihalkova, Huynh, & Mooney, 2007). We

will call the mapping portion ofTAMAR , MTAMAR . MTAMAR uses the concept

of a type-consistentmapping. A mapping of a source clause to the target domain

implies a correspondence from the source predicates in the clause to a subset of the

target predicates. Such a correspondence between a source predicate and a target
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predicate implicitly defines a mapping between the types of the arguments of the

two predicates. A mapping istype-consistentif, within a clause, a type in the source

domain is mapped to at most one type in the target domain.MTAMAR maps each

source clause independently of the others by evaluating allpossible type-consistent

mappings with the WPLL score (Kok & Domingos, 2005) (described on page 31),

computed on the target data. The mapping that achieves the highest score is output.

Example 3.2.1.To illustrateMTAMAR , we consider transfer from an academic

domain, which contains information about the students and professors in a depart-

ment, their publications, advising relationships, teaching activities, etc., to a do-

main about the movie business, such as the one we considered in Example 2.1.1.

These two domains use different representations, i.e. distinct sets of predicates, but

because they both concern human interactions, we expect there to be significant

similarities between them that would make transfer learning beneficial. Figure 3.1

(Mihalkova et al., 2007) shows an instance of such transfer,in which a single clause

is being transferred from the source domain. The source clause states that if pro-

fessorA and studentB are authors of the same publication, thenA is B’s advisor.

MTAMAR maps this source clause to the target movie domain, using thebest map-

ping it found, shown in the figure. The resulting mapped clause states that if director

A and actorB appeared in the credits of the same movie, thenB worked forA.

3.2.1 Revision of MLN Structure for Transfer

Once the source clauses have been mapped to the target domain, they may

need to be further revised. This task is carried out byRTAMAR , the revision part of
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Source clause:
Publication(T, A)∧ Publication(T, B)∧ Professor(A)∧ Student(B)∧

¬SamePerson(A, B)⇒ AdvisedBy(B, A)

Best mapping:
Publication(title,person) → Credits(movie,person)
Professor(person) → Director(person)
Student(person) → Actor(person)
SamePerson(person,person)→ SamePerson(person,person)
AdvisedBy(person,person)→ WorkedFor(person,person)

Clause mapped to target domain:
Credits(T, A)∧ Credits(T, B)∧ Director(A)∧ Actor(B) ∧

¬SamePerson(A, B)⇒ WorkedFor(B, A)

Figure 3.1: An example output of the predicate mapping algorithm

TAMAR . The skeleton ofRTAMAR has three steps and is similar to that of FORTE

(Richards & Mooney, 1995), which revises first-order theories.

1. Self-Diagnosis:The purpose of this step is to focus the search for revisions

only on the inaccurate parts of the MLN. The algorithm inspects the source

MLN and determines for each clause whether it should be shortened, length-

ened, or left as is. For each clauseC, this is done by considering every

possible implication rewrite ofC in which one of the literals is placed on

the right-hand side of the implication and is treated as the conclusion and

the remaining literals serve as the antecedents. The conclusion of a clause is

drawn only if the antecedents are satisfied and the clause “fires.” Thus, if a

clause makes the wrong conclusion, it is considered for lengthening because

the addition of more literals, or conditions, to the antecedents will make them
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harder to satisfy, thus preventing the clause from firing. Onthe other hand,

there may be clauses that fail to draw the correct conclusionbecause there are

too many conditions in the antecedents that prevent them from firing. In this

case, we consider shortening the clause.

2. Structure Update: Clauses marked as too long are shortened, while those

marked as too short are lengthened.

3. New Clause Discovery:New clauses are found in the target domain by rela-

tional pathfinding (RPF) (Richards & Mooney, 1992).

We next describe each step in more detail.

3.2.1.1 Self-Diagnosis

A natural approach to self-diagnosis is to use the transferred MLN to make

inferences in the target domain and observe where its clauses fail. This suggests that

the structure can be diagnosed by performing Gibbs samplingover it. Specifically,

this is done as follows. Each predicate in the target domain is examined in turn.

The current predicate under examination is denoted asP ∗. Self-diagnosis performs

Gibbs sampling withP ∗ serving as a query predicate with the values of its gliterals

set to unknown, while the gliterals of all other predicates provide evidence. In each

round of sampling, in addition to re-sampling a value for gliteral X of P ∗, the

algorithm considers the set of all ground clausesGX in whichX participates.

Each ground clauseC ∈ GX can be placed in one of four bins with respect to

X and the current truth assignments to the rest of the gliterals. These bins consider
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Director(coppola) Actor(brando)
Credits(godFather, brando) Credits(godFather, coppola)

Credits(rainMaker, coppola) WorkedFor(brando, coppola)

Figure 3.2: Example relational database

all possible cases of the premises being satisfied and the conclusion being correct.

We label a clause as Relevant if the premises are satisfied andIrrelevant otherwise.

For positively weighted clauses, we mark a relevant clause as Good if and only if

its conclusion is correct, and we mark an irrelevant clause as Good if and only if the

conclusion is incorrect. The Good/Bad labels are flipped forclauses with negative

weights. The four bins are defined by all possible ways of marking a clause as

Relevant/Irrelevant and Good/Bad.

Let v be the actual truth value ofX. This value is known from the data,

even though for the purposes of sampling we have set it to unknown. As an illus-

tration, we will use some groundings of the clauses in Figure3.3 with respect to the

data in Figure 3.2 (copied from page 18 for convenience) listing the current truth

assignments to the gliterals (the ones present are true; therest are false). Figure 3.3

also lists rewrites of the clauses in implication form wherethe implication has the

target predicate as a conclusion. This will be helpful in theexposition of the al-

gorithm. LetX = Actor(brando) with v = true. The following descriptions

assume positive weights. The negative weight cases are symmetric.

Relevant; Good: This bin contains clauses in which the premises are satisfiedand

the conclusion drawn is correct. For example, ifC is a grounding of the
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Clausal form Implication form wrt target predicateActor

Director(A)∨Actor(A) ¬Director(A)⇒ Actor(A)
Credits(M, A)∨¬Actor(A) ¬Credits(M, A)⇒ ¬Actor(A)
¬WorkedFor(B, A)∨¬Actor(A) WorkedFor(B, A)⇒ ¬Actor(A)
Actor(A)∨¬Credits(M,A)∨¬WorkedFor(A, B) Credits(M, A)∧ WorkedFor(A, B)⇒ Actor(A)

Figure 3.3: Clauses in example MLN for diagnosis

first clause in Figure 3.3 with the constantbrando , i.e. in implication form,

¬Director(brando)⇒ Actor(brando), it falls in this bin. We can alternatively

describe clauses in this bin as ones which are satisfied only if X has truth

valuev, the value it has in the data.

Relevant; Bad: The clauses in this bin are those whose premises are satisfiedbut

the conclusion drawn is incorrect. One such clause is¬Credits(rainMaker,

brando)⇒ ¬Actor(brando). Considering the clausal form, Credits(rainMaker,

brando)∨¬Actor(brando), we see that this bin contains clauses that are only

satisfied ifX has value¬v, the negation of its correct value in the data.

Irrelevant; Good: This bin contains clauses whose premises are not satisfied, and

therefore the clauses do not “fire,” but if they were to fire, the conclusion

drawn would be incorrect. One such clause is WorkedFor(coppola, brando)

⇒ ¬Actor(brando). In clausal form this formula is¬WorkedFor(coppola,

brando)∨¬Actor(brando). Thus a more mechanical way of describing the

clauses in this bin is that they are satisfied regardless of the value ofX in the

data; however, the literal corresponding toX in C is true only ifX has value

¬v.
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Irrelevant; Bad: The clauses in this bin are those whose premises are not satis-

fied, but if the clauses were to fire, the conclusion would be correct. One

such clause is Credits(rainMaker, brando)∧ WorkedFor(brando, coppola)⇒

Actor(brando). If we consider the clausal form, Actor(brando) ∨¬Credits

(rainMaker, brando)∨ ¬WorkedFor(brando, coppola), we can alternatively

describe the clauses in this bin as ones that are satisfied regardless of the

value ofX and in which the literal corresponding toX in C is true only ifX

has valuev.

Note that, although our examples only use clauses that contain a single literal ofP ∗,

the algorithm handles clauses with multipleP ∗ literals by setting the ones appearing

in the premises to their truth values from the current iteration of Gibbs sampling.

This taxonomy is motivated by Equation 2.4, reprinted here for convenience:

P (X = x|MBX = m) =
eSX(x,m)

eSX(0,m) + eSX(1,m)
(3.1)

The probability ofX = x is increased only by clauses in the[Relevant; Good]

bin and is decreased by clauses in the[Relevant; Bad] bin. Clauses in the other

two bins do not have an effect on this equation because their contribution to the

numerator and denominator cancels out. To see how this happens, consider a clause

girr ∈ GX from the set of ground clauses in whichX participates, such thatgirr

is satisfied regardless of the truth value ofX. The quantitySX(x,m) from Equa-
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tion 3.1 can be rewritten as follows:

SX(x,m) =
∑

gi∈GX

wigi(X = x, MBX = m) (3.2)

=
∑

gi∈GX ,i6=irr

wigi(X = x, MBX = m)

+wirrgirr(X = x, MBX = m) (3.3)

=
∑

gi∈GX ,i6=irr

wigi(X = x, MBX = m) + wirr (3.4)

= S∗
X(x,m) + wirr (3.5)

The next-to-last line follows becausegirr was picked such that the value ofgirr(X =

x, MBX = m) is 1 regardless ofx. Using this derivation, we can rewrite Equa-

tion 2.4 as follows:

P (X = x|MBX = m) =
eSX(x,m)

eSX(0,m) + eSX(1,m)
(3.6)

=
eS∗

X(x,m)+wirr

eS∗

X
(0,m)+wirr + eS∗

X
(1,m)+wirr

(3.7)

=
ewirreS∗

X(x,m)

ewirr

(

eS∗

X
(0,m) + eS∗

X
(1,m)

) (3.8)

As can be seen in line 3.8, the contribution ofgirr, ewirr , can be canceled from the

numerator and denominator.

If some of the literals other thanX in an [Irrelevant; Bad] clause, are

deleted so thatX ’s value becomes crucial, it will be moved to the[Relevant; Good]

bin. Similarly, if we add some literals to a[Relevant; Bad] clause so that it starts

to hold regardless of the value ofX, it will enter the[Irrelevant; Good] bin and

will no longer decrease the probability ofX having its correct value.
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As the value of a gliteral is re-sampled in each iteration of Gibbs sampling,

for each clause in which the gliteral participates, we countthe number of times it

falls into each of the four bins. Finally, if a clause was placed in the[Relevant;

Bad] bin more thanp percent of the time, it is marked for lengthening and if it

fell in the [Irrelevant; Bad] bin more thanp percent of the time, it is marked for

shortening. We anticipated that in the highly sparse relational domains in which

we tested, clauses would fall mostly in the[Irrelevant; Good] bin. To prevent

this bin from swamping the other ones, we setp to the low value of10%. This

value was set during earlier experiments on artificial data (Mihalkova & Mooney,

2006) and was not tuned to the data used for the experiments presented here. In the

future, it would be interesting to consider ways in which such parameters can be set

automatically. The process described above is repeated foreach predicate,P ∗, in

the target domain.

3.2.1.2 Structure Updates

Once the set of clauses to revise is determined, the actual updates are per-

formed using beam search. Beam search proceeds in iterations. In each itera-

tion, all possible literal additions or deletions are performed to the set of current

candidates, then best-performing are kept, and a new iteration begins. Unlike

Kok and Domingos (2005), however, we do not consider all possible additions and

deletions of a literal to each clause. Rather, we only try removing literals from

the clauses marked for shortening and we try literal additions only to the clauses

marked for lengthening. The candidates are scored using WPLL. Thus, the search
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space is constrained first by limiting the number of clauses considered for updates,

and second, by restricting the kind of update performed on each clause.

3.2.1.3 New Clause Discovery

The revision procedure can update clauses transferred fromthe source do-

main but cannot discover new clauses that capture relationships specific only to the

target domain. To address this problem, we used RPF (Richards & Mooney, 1992)

(described in Section 2.2.3) to search for new clauses in thetarget domain. The

clauses found by RPF were evaluated using WPLL, and the ones that improved the

overall score were added to the MLN. RPF and the previous structure updates step

operate independently of each other; in particular, the clauses discovered by RPF

are not diagnosed nor revised. However, we found that betterresults are obtained

if the clauses discovered by RPF are added to the MLN before carrying out the

revisions. This can be explained as follows. The revision step fills the resulting

structure with clauses that together achieve a very good WPLL on the training data.

If we perform RPF after this, even though it finds clauses thatare very reasonable

and would perform quite well, the MLN already has other clauses that interfere. In

this way, the good clauses discovered by RPF sometimes end upnot being added.

On the other hand, if we first add the RPF clauses to the MLN, they give an ini-

tial boost in WPLL and also constrain the beam search, causing it to finish faster

because it has less to improve.
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3.2.2 Experiments

In this section we present an experimental evaluation ofTAMAR . First, we

describe our methodology, which will also be used for the experiments in Chapter 4.

We then discuss the results specific toTAMAR .

Experimental Methodology: We used three relational domains—IMDB, UW-

CSE, and WebKB. Each data set is broken intomega-examples, where each mega-

example contains a connected group of facts. Individual mega-examples are inde-

pendent of each other. By arranging multi-relational data into mega-examples, we

are able to carry out principled cross-validation experiments, where, because mega-

examples are independent of one another, we can provide someas training data and

test on the rest. This is preferable to breaking up mega-examples, because in the

latter case, it is not clear how to break up the relations in the data so that there is

sufficient information for training and the test data is not contaminated.

The IMDB database is organized as five mega-examples, each ofwhich

contains information about four movies, their directors, and the first-billed actors

who appear in them. Each director is ascribed genres based onthe genres of the

movies he or she directed. The Gender predicate is only used to state the genders

of actors. The complete list of predicates in this domain is given in Figure 3.4 (a).

This data set3 is dramatically smaller than the data available from the International

Movie Database (www.imdb.com ). The reason for this is that originally the data

set was intended to be used as a target domain in which data is limited.

3Available fromhttp://www.cs.utexas.edu/ ˜ ml/mlns under “Data sets.”
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The UW-CSE database was compiled by Richardson and Domingos(2006).4

It lists facts about people in an academic department (i.e.Student , Professor )

and their relationships (i.e.AdvisedBy ). The complete list of predicates is given

in Figure 3.4 (b). The database is divided into mega-examples based on five areas

of computer science.

The WebKB database contains information about human relationships from

the “University Computer Science Department” data set, compiled by Craven et al.

(1998). The original data set contains Web pages from four universities labeled

according to the entity they describe (e.g. student, course), as well as the words

that occur in these pages. Our version of WebKB5 contains the predicates listed in

Figure 3.4 (c). The textual information is ignored. This data contains four mega-

examples, each of which describes one university. To extract the truth values for

these predicates, we used the files from the original data setthat list the student,

faculty, instructors-of, and members-of-project relationships. We treated each Web

address in these files as an entity in the domain and used the label of the corre-

sponding page to determine the gliteral truth values. Table3.1 provides additional

information about the domains.

To evaluate a given MLN, one needs to perform inference over it, pro-

viding some of the gliterals in the test mega-example as evidence and testing the

predictions of the remaining ones. We followed the testing scheme employed by

Kok and Domingos (2005) and tested for the gliterals of each of the predicates of

4Available athttp://alchemy.cs.washington.edu/ under “Datasets.”
5Available athttp://www.cs.utexas.edu/ ˜ ml/mlns/ under “Data sets.”
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(a) Predicates in IMDB
Director(person)
Actor(person)
Movie(title, person)
Gender(person, gend)
WorkedUnder(person, person)
Genre(person, genr)
SamePerson(person, person)
SameMovie(title, title)
SameGenre(genr, genr)
SameGender(gend, gend)

(c) Predicates in WebKB
Student(person)
SamePerson(person, person)
Faculty(person)
Project(projname, person)
CourseTA(coursename, person)
CourseProf(coursename, person)

(b) Predicates in UW-CSE
TaughtBy(course, person, semester)
CourseLevel(course, level)
Position(person, pos)
AdvisedBy(person, person)
ProjectMember(project, person)
Phase(person, phas)
TempAdvisedBy(person, person)
YearsInProgram(person, year)
TA(course, person, semester)
Student(person)
Professor(person)
SamePerson(person, person)
SameCourse(course, course)
SameProject(project, project)
Publication(title, person)

Figure 3.4: Predicates in each of our domains. The argument types for each predi-
cate are listed in the parentheses.

the domain in turn, providing the rest as evidence, and averaging over the results.

However, for inference we used the MC-SAT algorithm that hasbeen demonstrated

to give more accurate results (Poon & Domingos, 2006). The inference procedure

outputs the probability that each of the query gliterals is true. To summarize these

results, we used two standard evaluation metrics common in the SRL commu-

nity that were also employed by Kok and Domingos (2005): the area under the

precision-recall curve (AUC) and the conditional log-likelihood (CLL). To com-

pute the AUC, first a precision-recall curve is generated. This is done by varying a
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Data Set Number of Number of Number of Number of True Total Number of
Consts Types Preds Gliterals Gliterals

IMDB 316 4 10 1,540 32,615
UW-CSE 1,323 9 15 2,673 678,899
WebKB 1,700 3 6 2,065 688,193

Table 3.1: Details about the domains.

probability threshold whose value determines which propositions are labeled pos-

itive and which negative; i.e. the ones whose probability ofbeing true is greater

than the threshold are positive and the rest are negative. The precision and recall

are computed as follows:

Precision=
Number of propositions correctly labeled as positive

Number of all propositions labeled as positive

Recall=
Number of propositions correctly labeled as positive

Total number of positive propositions in the data

A curve is produced by plotting a point for the precision and recall obtained at a

set of threshold values. The AUC is the area under this curve.The AUC is useful

because it demonstrates how well the algorithm predicts thefew positives in the

data and is not affected by the large number of true negativestypically present in

relational data sets (the reader is encouraged to compare the number of true gliterals

to the total number of gliterals in Table 3.1).

The CLL is computed by taking the log of the probability predicted by the

model that a gliteral has its correct truth value in the data,and averaging over the

query gliterals. The CLL complements the AUC because it determines the quality

of the probability predictions output by the algorithm.
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Learning curves for each performance measure were generated using a leave-

1-mega-example-out approach, averaging overk different runs, wherek is the num-

ber of mega-examples in the domain. In each run, we reserved adifferent mega-

example for testing and trained on the remainingk − 1, which were provided one

by one. All systems observed the same sequence of mega-examples. The error bars

on the curves are formed by averaging the standard error overthe predictions for

the groundings of each predicate and over the learning runs.Error bars are drawn

on all curves but in some cases they are tiny.

We also present results on the training times needed by the learners, and the

number of clauses they considered in their search. Timing runs within the same

transfer experiment were conducted on the same dedicated machine.

Systems Compared: We compared the performance of the following systems.

KD run from scratch (ScrKD) in the target domain;KD used to revise a source struc-

ture translated into the target domain usingMTAMAR (TrKD); and the complete

transfer system usingMTAMAR andRTAMAR (TAMAR ).

We used the implementation ofKD provided as part of the Alchemy software

package (Kok et al., 2005) and implemented our new algorithms as part of the same

package. We kept the default parameter settings of Alchemy except that we set

the parameter penalizing long clauses to 0.01, the one specifying the maximum

number of variables per clause to 5, and the minWeight parameter to 0.1 in IMDB

and WebKB and to 1 in UW-CSE, the value used in (Kok & Domingos,2005). All

three learners used the same parameter settings.
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We considered the following transfer scenarios: WebKB→ IMDB, UW-

CSE→ IMDB, WebKB → UW-CSE, IMDB→ UW-CSE, where the notation Do-

main 1→ Domain 2 means transfer from Domain 1 to Domain 2. We did not

consider transfer to WebKB because the small number of predicates and large num-

ber of constants in each mega-example, which represents an entire university, made

it too easy to learn from scratch in this domain. WebKB is therefore a good source

domain but uninteresting as a target domain. Source MLNs were learned by ScrKD.

We also consider the scenario where the hand-built knowledge base provided with

the UW-CSE data is used as a source MLN (UW-KB→ IMDB). This knowledge

base was written by human volunteers who were instructed to write general facts

about academia in first-order logic (Richardson, 2004). In this interesting twist on

traditional theory refinement, the provided theory needs tobe mapped to the target

domain, as well as revised.

Results: The full learning curves are presented in Appendix 1. Here wesumma-

rize them using two statistics: the transfer ratio (TR) (Cohen, Chang, & Morrison,

2007), and the percent improvement from 1 mega-example (PI). TR is the ratio be-

tween the area under the learning curve of the transfer learner (TAMAR or TrKD)

and the area under the learning curve of the learner from scratch (ScrKD). Thus, TR

gives an overall idea of the improvement achieved by transfer over learning from

scratch. TR> 1 signifies improvement over learning from scratch in the target do-

main. PI gives the percent by which transfer improves accuracy over learning from

scratch after observing a single mega-example in the targetdomain. It is useful be-
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TR PI
Experiment TrKD TAMAR TrKD TAMAR

WebKB→ IMDB 1.51 1.55 50.54 53.90
UW-CSE→ IMDB 1.42 1.66 32.78 52.87
UW-KB → IMDB 1.61 1.52 40.06 45.74

WebKB→ UW-CSE 1.84 1.78 47.04 37.43
IMDB → UW-CSE 0.96 1.01 -1.70 -2.40

Average 1.47 1.50 33.74 37.51

Table 3.2: Transfer ratio (TR) and percent improvement from1 mega-example (PI)
on AUC over ScrKD.

cause in transfer-learning settings data for the target domain is frequently limited.

In terms of AUC (Table 3.2), both transfer systems improve over ScrKD in

all but one experiment. Neither transfer learner consistently outperforms the other

on this metric, but on average over the five experiments,TAMAR performs slightly

better. We note that in transfer to UW-CSE,TAMAR ’s PI is smaller than that of

TrKD, even though their TRs are roughly the same. We conjecture that this happens

because the mega-examples in UW-CSE are not identically distributed. Each mega-

example in this domain represents one area of computer science, and the types and

amounts of interaction among the entities vary across areas. As a result, when

TAMAR uses just one of these mega-example to self-diagnose the source structure,

it may be misled by the peculiarities of that mega-example, causing it to mis-assign

source clauses to bins. This is corroborated by the fact thatthe performance of

TAMAR and TrKD becomes roughly the same when more mega-examples are pro-

vided, as indicated by the roughly equal TRs and as can also beseen from the full

learning curves in Appendix 1.
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TR PI
Experiment TrKD TAMAR TrKD TAMAR

WebKB→ IMDB 1.41 1.46 51.97 67.19
UW-CSE→ IMDB 1.33 1.56 49.55 69.28
UW-KB → IMDB 1.21 1.44 30.66 58.62

WebKB→ UW-CSE 1.17 1.36 19.48 32.69
IMDB → UW-CSE 1.62 1.67 34.69 54.02

Average 1.35 1.50 37.27 56.36

Table 3.3: Transfer ratio (TR) and percent improvement from1 mega-example (PI)
on CLL over ScrKD.

Table 3.3 shows that transfer learning always improves overlearning from

scratch in terms of CLL, andTAMAR ’s performance is better than TrKD ’s in all

cases. In the last experiment, IMDB→ UW-CSE, we observe that transfer improves

over learning from scratch in terms of CLL but is worse in terms of AUC. This

demonstrates that AUC and CLL complement each other. We believe this slightly

worse performance of the transfer systems is probably due torandom variation.

Moreover, as can be seen from Table 3.4,TAMAR trains faster than TrKD,

and both transfer systems are faster than ScrKD. TAMAR also considers fewer can-

didate clauses during its beam search, as can be seen in Table3.5. According to a

t-test performed for each point on each of the learning curves, at the95% level with

sample size 5 per point, these differences were significant in 15 out of 20 cases for

speed and 18 out of 20 for number of candidates. In some cases TrKD considers

more candidates than ScrKD but takes less time to train. This can happen if TrKD

considers more candidates earlier in the learning curves when each candidate is

evaluated faster on less data.
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Experiment ScrKD TrKD TAMAR TAMAR speed-up over TrKD

WebKB→IMDB 62.23 32.20 11.98 2.69
UW-CSE→IMDB 62.23 38.09 15.21 2.50
UW-KB→IMDB 62.23 40.67 6.57 6.19

WebKB→UW-CSE 1127.48 720.02 13.70 52.56
IMDB→UW-CSE 1127.48 440.21 34.57 12.73

Average 488.33 254.24 16.41 15.33

Table 3.4: Average (over all learning curve points) total training time in minutes.

Experiment ScrKD TrKD TAMAR

WebKB→IMDB 7,558 10,673 1,946
UW-CSE→IMDB 7,558 14,163 1,976
UW-KB→IMDB 7,558 15,118 1,613

WebKB→UW-CSE 32,096 32,815 827
IMDB→UW-CSE 32,096 7,924 978

Average 17,373.2 16,138.6 1,468.0

Table 3.5: Average (over all learning curve points) number of candidate clauses
evaluated.

The complete learning curves are given in Appendix 1. Here wepresent the

most interesting among them. Figure 3.5 shows the learning curve in the UW-CSE

→ IMDB experiment. Here we additionally tested the performance of systems that

do not useMTAMAR but are provided with an intuitive hand-constructed mapping

that maps Student→ Actor, Professor→ Director, AdvisedBy/TempAdvisedBy→

WorkedFor, Publication→ Movie, Phase→ Gender, and Position→ Genre. The

last two mappings are motivated by the observation that Phase in UW-CSE applies

only to Student and Gender in IMDB applies only to Actor, and similarly Position

and Genre apply only to Professor and Director respectively. The systems using

the automatic mapping perform much better becauseMTAMAR maps each clause
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Figure 3.5: Learning curves in UW-CSE→ IMDB for AUC. The zeroth points are
obtained by testing the MLN provided to the learner at the start.

independently of the rest; i.e., the same source predicate appearing in different

clauses may be mapped in different ways.MTAMAR also has the ability to “erase” a

predicate from a clause by mapping it to the “empty” predicate in the target domain.

This flexibility allows the source knowledge to adapt betterto the target domain.

3.3 SR2LR: When Target-Domain Data is Severely Limited

TAMAR assumes that at least one mega-example from the target domain

is available. In this section, we study the challenging caseof limited target data,

in which transfer learning could have the greatest impact. In particular, here we

assume minimal target-domain data that consists of just a handful of entities, in the

extreme case just a single one. Figure 3.6 contrasts the amount of data assumed by

TAMAR to that assumed in this section.
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AdvisedBy
Publication

Figure 3.6: Target data assumed bySR2LR vs TAMAR . The nodes in this graph
represent the entities in the domain and the edges representthe relations in which
these entities participate. TAMAR assumes that the information from the entire
graph is provided.SR2LR assumes that just the bold relations are known.

This setting may arise in a variety of situations. For instance, when a new

social networking site is launched, data is available on only a few initial registrants.

The popularity of the site depends on its ability to make meaningful predictions that

would allow it to suggest promising friendships to users. However, the sparsity of

available data and the fact that data from other social networking sites is usually

proprietary make learning of an effective model from scratch infeasible.

Frequently, two domains differ in their representations, but the underlying

regularities that govern the dynamics in each domain are similar. So, when trans-

ferring a model learned from an academic data set to a movie business domain,

one may discover that students and professors are similar toactors and directors

respectively, which makes writing an academic paper analogous to directing or par-

ticipating in a movie. Likewise, because human interactions bear a certain degree of

similarity across settings, the social networking site canlearn strong models from
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data on the professional relations among its employees and map them for the task

of interest based on its very limited supply of data from the new site.

3.3.1 TheSR2LR Algorithm

When target data is so limited, effective transfer depends on the ability to

map the representation of a source model learned in a closelyrelated domain to

that of the target task. The main challenge addressed in thissection is, therefore,

to harness the small amount of data in the target domain in order to find useful

mappings between the source and target representations.

We present an efficient algorithm for this task,SR2LR (which stands for

Short-Range To Long-Range) (Mihalkova & Mooney, 2009b), that is based on the

observation that a good model for the source domain containstwo types of clauses—

short-range ones that concern the properties of a single entity and long-range ones

that relate the properties of several entities. Because possible mappings of the short-

range clauses to the target domain can be directly evaluatedon the available target

data, the key is to use the short-range clauses in order to findmappings between

the relations in the two domains, which are then used to translate the long-range

clauses, thus boosting the performance of the model in the target domain.

Single-Entity Case: We first describe the algorithm for the extremesingle-entity-

centeredsetting, in which information about only one entity is available. Then we

generalize to more than one entity. More precisely, for now we assume that the

data lists all true gliterals concerning acentral entity e, and only those gliterals.

Gliterals that involvee but are not listed are assumed to be false. Gliterals that do
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not involvee have unknown values. Thus, unlike in other sections, here weare

making the closed-world assumptiononly with respect to the central entity. Facts

that are not about the central entity are assumed to have unknown, rather than false,

truth values.

Mapped clauses that can be directly evaluated given a single-entity-centered

example are short-range; the rest are long-range.

Definition 3.3.1. A clauseC is short-range with respect to an entity of typet iff

there exists a variablev that appears in every literal ofC andv represents arguments

of typet. A clause islong-rangewith respect toE iff it is not short-range.

Example 3.3.1.As an example, suppose we would like to transfer the MLN in

Figure 3.7 using the data in Figure 3.8, i.e., transfer from amovie domain to an

academic domain. Let us consider one possible type-consistent mapping of the first

clause in Figure 3.7, which is given in line 1.1 of Figure 3.9.Note that variable

A appears in both literals of this clause. Therefore, the clause is short-range. The

truth value of any grounding that uses the substitutionA = bob can be directly

evaluated from the data. For example, if we ground this clause using the substitution

A = bob, B = ann, we obtain a ground clause whose literals are all known from

our data, thus the clause can be evaluated and hence, it is short-range.

Definition 3.3.2. A ground clause isverifiable if it contains only gliterals with

known truth values.

Example 3.3.2.Continuing the example, if we use the substitutionA = ann, B =

bob, the resulting grounding cannot be directly evaluated because the truth-value of
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1 0.7 : WorkedFor(A, B) ⇒ ¬Director(A)
2 0.8 : Credits(M, A) ∧ Credits(M, B) ∧ Director(B) ⇒ WorkedFor(A, B)

Figure 3.7: Source MLN

Student(bob), Publication(paper1, bob),
Publication(paper2, bob) , AdvisedBy(bob, ann)

Figure 3.8: Target domain data centered aroundbob. All listed atoms are true;
atoms aboutbob that are not listed are false; the remaining atoms have unknown
values.

Professor (ann) is unknown. We say that the earlier grounding isverifiable,

whereas the second one is not. Now consider one possible mapping of the second

clause in Figure 3.7, given in line 2.1 of Figure 3.9. This clause concerns relations

that go beyond just a single entity because it is about paperswritten by other people

and is therefore long-range.

Algorithm 1 formally describesSR2LR. In line 1, the weight of a mapped

clause is set to the weight of the source clause from which it was mapped. Because

of limited target data, we do not attempt to re-learn weightsor to revise the mapped

clauses.6 In line 3, the short-range mapped clauses are evaluated, as described in

Algorithm 2, which checks whether the verifiable groundingsof short-range clauses

are satisfied in the target data. Clauses that are satisfied atleastΘ proportion of the

time are accepted; the rest are rejected. This procedure automatically rejects clauses

that are not informative.

6MTAMAR also directly copies the weights.
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1.1 AdvisedBy(A, B) ⇒ ¬Professor(A)
WorkedFor→ AdvisedBy, Director→ Professor
1.2 AdvisedBy(A, B) ⇒ ¬Student(A)
WorkedFor→ AdvisedBy, Director→ Student
2.1 Publication(M, A) ∧ Publication(M, B)∧

Professor(B) ⇒ AdvisedBy(A, B)
WorkedFor→ AdvisedBy, Director→ Professor,
Credits→ Publication
2.2 Publication(M, A) ∧ Publication(M, B)∧

Student(A) ⇒ AdvisedBy(A, B)
WorkedFor→ AdvisedBy, Director→ Student,
Credits→ Publication

Figure 3.9: Example mapped clauses. The predicate correspondences used to map
each clause are listed under it.

Definition 3.3.3. A short-range clause isinformative with respect to a single-

entity-centered example if it has a verifiable grounding in which at least one gliteral

is false.

Intuitively, a clause is uninformative if, in every possible re-writing of the

clause as an implication, the premises are never satisfied, and so the clause is always

trivially true.

Example 3.3.3.For example, consider the clause Student(A)∨¬AdvisedBy(B, A),

which has two verifiable groundings corresponding to the substitutionsA = bob,

B = ann, andA = bob, B = bob. It is not informative because all the literals in

its verifiable groundings are true. To develop intuition forthe significance of this,

consider one of the groundings: Student( bob)∨¬AdvisedBy(ann, bob). We can re-

write it as¬Student(bob) ⇒ ¬AdvisedBy(ann, bob) or equivalently as AdvisedBy
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Algorithm 1 SR2LR algorithm
Input: SrcMLN: Source Markov logic network

TE: Target data centered on the entityE
P: Set of predicates in the target domain
Θ: Truth threshold for accepting a short-range clause

Procedure:
1: GenerateTarMap, the set of all possible type-consistent mappings of the clauses

in SrcMLN. Each mapped clause gets the weight of its corresponding source
clause.

2: Split the clauses inTarMap into sets of short-range clauses,S, and long-range
clauses,L.

3: S′ = filter-short-range(S, Θ) (Algorithm 2)
4: Add all clauses fromS′ to Result

5: L′ = filter-long-range(L, S′) (Algorithm 3)
6: Add all clauses fromL′ to Result

7: Let AC be the set of all clauses inResult mapped from source clauseC with
weightwC .

8: Set the weight of eacha ∈ AC to wC/|AC|.

(ann, bob) ⇒ Student(bob). In both cases, the premises of these clauses do not

hold, and thus the clauses cannot be used to draw inferences that can be tested. So,

judgements about mappings based on such clauses are likely to be misleading.

Once the short-range clauses are evaluated, in line 5 of Algorithm 1,SR2LR

evaluates the long-range ones, based on the mappings found to be useful for short-

range clauses. A long-range clause is accepted if all source-to-target predicate map-

pings implied by it either led to accepted short-range clauses (support by evalua-

tion) or were never considered by Algorithm 2 (support by exclusion). More pre-

cisely, letCS andCL be short-range and long-range mapped clauses respectively.

If the set of source-to-target predicate correspondences implied byCS is a subset of

those implied byCL, we say that the literals ofCL that appear inCS aresupported
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Algorithm 2 filter-short-range(S, Θ)
1: S′ = ∅
2: for eachC ∈ S do
3: if C is informative and the proportion of verifiable groundings of C that are

true is≥ Θ then
4: Add C to S′

5: end if
6: end for
7: ReturnS′

Algorithm 3 filter-long-range(L, S′)
1: L′ = ∅
2: for eachLR ∈ L do
3: if All literals in LR are supported either by evaluation based on the clauses

in S′ or by exclusionthen
4: Add LR to L′

5: end if
6: end for
7: ReturnL′

by evaluation. A correspondence between source predicatePS and target predicate

PT is supported by exclusionwith respect to a set of mapped short-range clausesS

if PS andPT do not appear in any of the source-to-target predicate correspondences

implied by the clauses inS. The goal of support by exclusion is to allow for predi-

cates that do not appear in the short-range clauses to be mapped. Although support

by exclusion may seem too risky, i.e., if a pair of completelyunrelated source and

target predicates are mapped to each other, in our experience the type consistency

constraint and the requirement that neither of the predicates was mapped to any

other predicate were strong enough to safeguard against this.

Example 3.3.4.We now illustrate Algorithm 1 up to line 7. Figure 3.9 lists some
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mappings of the clauses in Figure 3.7, along with the source-to-target predicate

correspondences implied by them. Clauses 1.1 and 1.2 are (informative) short-

range, and 2.1 and 2.2 are long-range. LetΘ = 1. All verifiable groundings of

clause 1.1 are satisfied by the target data (given in Figure 3.8). Thus, this clause

is accepted and the predicate correspondences found by it are useful. Clause 1.2 is

rejected because not all of its verifiable groundings are satisfied by the target data.

ThusS′ contains only clause 1.1. Moving on to the long-range clauses, we see that

predicatesAdvisedBy andProfessor in clause 2.1 are supported by clause

1.1; Publication is supported by exclusion, so clause 2.1 is accepted. Clause

2.2 is not accepted because there is no support forStudent(B) .

Finally, in lines 7-8 of Algorithm 1 the weight of each mappedclauseMC

is divided by the number of mapped clauses that originated from the same source

clause asMC in order to ensure that none of the source clauses dominates the re-

sulting model. In preliminary experiments this led to slightly better performance.

More Than One Entity: The generalization to more than one entity is easy. The

only difference is that now we havea setof single-entity-centered training exam-

ples, and Algorithm 2 checks the validity of each short-range clause on each of

the examples, accepting a clause if it holds more thanΘ proportion of the time

over all examples. As more entities become known, some of thelong-range clauses

become directly verifiable. However, in preliminary experiments, we found that

directly evaluating long-range clauses in this way does notsignificantly help per-

formance, i.e., additional entities lead to improved accuracy mostly because they

allow for more reliable evaluation of the short-range clauses.
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Choice of Representation: The only characteristic of MLNs crucial toSR2LR is

that MLNs use first-order clauses that are interpreted in thestandard way for first-

order logic, i.e. by evaluating their truth values. This is crucial becauseSR2LR also

interprets the clauses in the traditional way.SR2LR would therefore be applica-

ble to any relational model that is based on a traditional interpretation of first-order

logic, such as purely logical representations that performlogical inference, stochas-

tic logic programs (SLPs) (Muggleton, 1996), andMACCENT (Dehaspe, 1997). In

SLPs, knowledge is encoded as a set of Horn clauses with attached probabilities.

The probability that a particular ground atom is true is calculated by summing the

probabilities of all paths in an SLD-tree7 (De Raedt, 2008) that lead to a successful

refutation, where the probability of a path is the product ofthe probabilities of all

clauses that were used in this path.SR2LR could also be applied to transferring

knowledge learned by theMACCENT system (Dehaspe, 1997), which is similar to

MLNs in that it uses first-order clauses to define a maximum entropy distribution

but, unlike MLNs, works only on independent examples and is used to model a

conditional distribution. SR2LR would not be applicable to Bayesian logic pro-

grams (BLPs)(Kersting & De Raedt, 2001), which do not interpret their clauses in

the standard way. Rather, each clause in a BLP encodes a dependency of groundings

of the head on the corresponding groundings of the body. MLNshave properties

which, while not crucial toSR2LR, contribute to its effectiveness. In particular, the

ability of MLNs to handle uncertainty allowsSR2LR to recover gracefully from an

7An SLD tree shows the steps taken in SLD resolution, a type of logical inference that applies to
Horn clauses, in order to prove a given logical statement. A path in this tree represents one possible
sequence of steps that can be followed to prove the given statement.
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occasional incorrect predicate mapping: provided that most of the mapped clauses

are useful, the negative effect of a few misleading ones willbe mitigated by the fact

that, when computing a probability distribution, MLNs consider the contribution of

all of the clauses in the model. This is not observed in purelylogical representations

in which a clause is used in isolation, and some of the clausesmay never be used.

3.3.2 Experiments

We first describe methodology followed in the experiments and then discuss

the empirical questions we asked and the results we obtained.

Methodology: We comparedSR2LR to MTAMAR and other baselines in the three

benchmark relational domains on social interactions that we used to evaluateTAMAR :

IMDB, UW-CSE, and WebKB. The IMDB and UW-CSE domains are verysimilar

in terms of the regularities between the relations in them, but the actual representa-

tions they use differ. For example, in IMDB an actor and a director are usually in

a WorkedFor relationship if they appear in the credits of the same movie.Anal-

ogously, in UW-CSE a student and a professor are typically inan AdvisedBy

relationship if they appear in the author list of the same publication. Thus, an algo-

rithm capable of discovering effective mappings from the predicates of one domain

to those of the other, would be able to achieve good accuracy via transfer. This

example also demonstrates why data centered around a singleentity, or a handful

of isolated entities, cannot support effective learning from scratch: one of the most

useful clauses for predictingAdvisedBy involves knowledge about the publica-
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tions of twoconnectedentities, i.e., the advisor and the advisee. Although UW-CSE

may seem more closely related to WebKB than to IMDB, in fact, WebKB does not

have a predicate analogous toadvisedBy , which renders it much less useful for

transfer. Nevertheless, we include experimental results on transfer from and to We-

bKB in order observe how the degree of relatedness between the source and target

domains affects the quality of transfer. We note that although some of the predicates

occur in more than one domain under the same name, the systemsdo not use the

actual predicate names.

Sources were learned withBUSL (Mihalkova & Mooney, 2007), which, as

we demonstrate in Chapter 4, gives good performance in the domains we consider.8

We slightly modifiedBUSL to encourage it to learn larger models by removing

the minWeight threshold and by treating the clauses learned for each predicate

separately. This leads to models that are less accurate in the source domain but

in some cases allow for more effective transfer, as we discovered in preliminary

experiments (Mihalkova & Mooney, 2008). We call these models learned9. Ex-

perimental results of transferring from sources learned with the originalBUSL are

shown in Section 3.3.2.1. For transfer from UW-CSE, we also used the manually

coded knowledge base provided with that data set. We call itmanual.

As before, we report the results in terms of the area under theprecision-

recall curve (AUC) and the conditional log-likelihood (CLL). We report CLL for

8These sources were not used for the experiments withTAMAR becauseBUSL had not yet been
developed at that time.

9Source MLNs are available fromhttp://www.cs.utexas.edu/users/ml/mlns/
under SR2LR.
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completeness; however, because we are unable to tune the weights of the MLN on

the limited target data, the CLL may be misleading. This can happen when the

predicted probabilities are correctly ordered, i.e., trueground atoms have higher

probability than false ones (thus giving a high AUC), but arenot close to 0 or 1

(thus giving a low CLL). At the same time, because of the largenumber of true

negatives, the CLL can be boosted by predicting near 0 for every ground atom; so

a model that predicts very low probabilities has a relatively high CLL even when

these probabilities are incorrectly ordered.

We implementedSR2LR and the baselines as part of the Alchemy system

(Kok et al., 2005).Θ in Algorithm 1 was set to 1. Inference during testing was

performed on the mega-examples other than the one supplyingtraining data, iterat-

ing over the available test examples. Within the same experiment, all systems used

the same sequence of training and testing examples. The performance of a given

predicate was evaluated by inferring probabilities for allof its groundings, given

the truth values of all other predicates in the test mega-example as evidence. While

training occurs on limited data, we test on a full mega-example. This is appropriate

because the final goal of transfer is to obtain a model that gives effective predictions

in the target domain as a whole and not just for an isolated entity. For inference, we

used the Alchemy implementation of MC-SAT (Poon & Domingos,2006) with the

default parameter settings. Statistical significance was measured via a paired t-test

at the95% level. As a final note, all systems we compared ran extremely efficiently

and found mappings in a few seconds on a standard workstation.
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Overall Performance: The first set of experiments evaluates the relative accuracy

of SR2LR over all predicates in each domain in the most challenging case when

only information about a single entity from the target domain is available. We

formed single-entity-centered examples by randomly selecting as the central entity

10% of the entities of type person from each mega-example available in the target

domain. This resulted in 29 entities in IMDB, 58 in UW-CSE, and 147 in WebKB.

We compared againstMTAMAR and aScratch baseline that learns with no transfer

as follows.

Scratch Baseline:For every ordered pair of known atoms in the available data, a

clause is formed by having the first atom imply the second and variablizing consis-

tently. All clauses obtained in this way are assigned a weight of 1. This baseline

generates a set of informative clauses that are true in the given data. If a clause has

groundings that are violated by the data, then our construction procedure guaran-

tees that there will be another clause with the same weight of1, which draws the

opposite conclusion so that clauses that are not always truein the data cancel each

other in pairs during inference. Thus, this baseline can be viewed as a variation of

SR2LR that transfers only the short-range clauses of a source model that contains of

all possible clauses of length 2.

Tables 3.6 and 3.7 list the accuracies for every possible target/source pair in

terms of AUC and CLL respectively. Statistically significant improvement (degra-

dation) overMTAMAR is indicated by a↑ (↓), and significant improvement (degra-

dation) over Scratch is indicated byր (ւ). In terms of AUC, the more informative

measure, transfer between UW-CSE and IMDB is always beneficial over learning
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Target Source MTAMAR Scratch SR2LR

IMDB UW-CSE-learned 0.327 0.276 0.452↑ ր
IMDB UW-CSE-manual 0.414 0.276 0.577↑ ր
IMDB WebKB-learned 0.388 0.276 0.468↑ ր
UW-CSE IMDB-learned 0.115 0.108 0.188↑ ր
UW-CSE WebKB-learned 0.199 0.108 0.174↓ ր
WebKB IMDB-learned 0.164 0.287 0.168↑ ւ
WebKB UW-CSE-learned 0.297 0.287 0.295
WebKB UW-CSE-manual 0.276 0.287 0.178↓ ւ

Table 3.6: Average AUC over all target domain predicates.

Target Source MTAMAR Scratch SR2LR

IMDB UW-CSE-learned -1.692 -4.575 -0.682↑ ր
IMDB UW-CSE-manual -0.433 -4.575 -0.502↓ ր
IMDB WebKB-learned -0.728 -4.575 -0.872↓ ր
UW-CSE IMDB-learned -2.057 -5.708 -0.606↑ ր
UW-CSE WebKB-learned -1.191 -5.708 -0.891↑ ր
WebKB IMDB-learned -1.731 -3.440 -0.694↑ ր
WebKB UW-CSE-learned -1.221 -3.440 -0.643↑ ր
WebKB UW-CSE-manual -0.561 -3.440 -0.873↓ ր

Table 3.7: Average CLL over all target domain predicates.

from scratch, andSR2LR always has a significant advantage overMTAMAR . As

expected, transfer to or from WebKB and the other two domainsleads to less con-

sistent gains and, in some cases, degradation.SR2LR is competitive also in terms

of CLL, although in some cases, as discussed earlier, a modelthat gives significant

advantages in AUC is at a disadvantage in CLL.

Focus on Specific Predicates: We have shown that, over all predicates in a do-

main, SR2LR can lead to significant gains in accuracy. Next, we study in greater
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detail the performance on theWorkedFor predicate in IMDB andAdvisedBy

in UW-CSE, which, as argued earlier, require more data to be learned from scratch,

and are best predicted by long-range clauses. The choice ofAdvisedBy as the

predicate to study in more detail is also motivated by the fact that it has been treated

as the target predicate by several authors (e.g., Davis et al., 2007; Biba et al., 2008;

Singla & Domingos, 2008). We pickedWorkedFor because it corresponds to

AdvisedBy in the IMDB domain.

We used the single-entity-centered instances from our experiments for the

overall performance and introduced an additional baselinewe callSR-Only.

SR-Only Baseline:UsesSR2LR to transfer only the short-range clauses, ignoring

the long-range ones. This baseline is used to verify that transferring the long-range

clauses is beneficial.

Statistically significant improvement (degradation) ofSR2LR over SR-Only

is indicated by a⇑ (⇓). As shown in Table 3.8, when transferring to IMDB from

UW-CSE,SR2LR significantly outperforms all other methods.SR2LR also leads to

significant gains in transfer from IMDB to UW-CSE, although in this caseSR2LR

is significantly better than SR-Only just on CLL, equaling its performance on AUC.

Transferring from IMDB to UW-CSE is less beneficial than going in the opposite

direction, from UW-CSE to IMDB, because several predicatesin UW-CSE do not

have analogs in IMDB while most of IMDB’s predicates have a matching predicate

in UW-CSE. As before, transfer from the more distantly related WebKB domain

produces mixed results.

73



Source MTAMAR SR-only Scratch SR2LR

UW-CSE-manual 0.726 0.339 0.032 0.982↑ ⇑ ր
UW-CSE-learned 0.024 0.215 0.032 0.239↑ ⇑ ր
WebKB-learned 0.025 0.023 0.032 0.023↓ ւ

Source MTAMAR SR-only Scratch SR2LR

IMDB-learned 0.010 0.030 0.008 0.030↑ ր
WebKB-learned 0.007 0.007 0.008 0.007ւ

Table 3.8: AUC forWorkedFor in IMDB (top) andAdvisedBy in UW-CSE
(bottom).

Source MTAMAR SR-only Scratch SR2LR

UW-CSE-manual -0.084 -0.066 -6.488 -0.037↑ ⇑ ր
UW-CSE-learned -0.385 -0.695 -6.488 -0.727↓ ⇓ ր
WebKB-learned -0.728 -0.700 -6.488 -0.700↑ ր

Source MTAMAR SR-only Scratch SR2LR

IMDB-learned -1.767 -0.295 -5.542 -0.280↑ ⇑ ր
WebKB-learned -0.757 -0.696 -5.542 -0.696↑ ր

Table 3.9: CLL forWorkedFor in IMDB (top) andAdvisedBy in UW-CSE
(bottom).

Increasing Numbers of Entities: In our final set of experiments, we compared

the accuracy ofSR2LR versus that ofMTAMAR onWorkedFor andAdvisedBy ,

as information about more entities becomes available. To dothis, we considered

5 distinct orderings of the constants of type person in each mega-example, and

provided the firstn to the systems, withn ranging from 2 to 40 in IMDB, where the

smallest mega-example has 44 constants of type person and from 2 to 50 in UW-

CSE, where the smallest mega-example has 56 such constants.Each point on the

curves is the average over all training instances with that many known entities. The

results in terms of AUC are shown in Figure 3.10. As can be seen, SR2LR maintains
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its effectiveness even as more data becomes available. Surprisingly, in UW-CSE

MTAMAR ’s performance actually decreases as more entities become known. We

conjecture that this is due to the fact that whereasSR2LR keeps all mappings that

are supported by the data,MTAMAR picks the best mapping in terms of WPLL score

for each source clause. As more entities become known, thereare a larger number

of possible relations among them. If the known entities are disconnected, however,

MTAMAR does not observe many instances in which mappings of the long-range

clauses are helpful and therefore rejects them in favor of mappings that produce

short-range clauses (by mapping source predicates to the “empty” target predicate),

for which there is growing support.SR2LR is not susceptible to this because it

treats long-range and short-range clauses separately. This effect is not observed in

the smaller IMDB domain where randomly chosen entities are much less likely to

be disconnected.

This last set of experiments raises the interesting point ofwhen, if at all, one

should switch fromSR2LR to MTAMAR , as the number of known entities grows.

Our experiments provide indirect evidence that in some cases it might be better to

use a simpler, less discriminating, measure to evaluate potential clause mappings.

3.3.2.1 Using Sources Learned with OriginalBUSL

Finally, we would like to compare the performance ofSR2LR using source

MLNs learned with the originalBUSL to its performance using the sources from

our main experiments. Tables 3.10 and 3.11 present a comparison between the

performance ofSR2LR from sources learned with the originalBUSL algorithm to
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Figure 3.10: Accuracy on increasing amounts of data onWorkedFor (left) and
AdvisedBy (right).

those learned with the slightly modified version ofBUSL used in Section 3.3.2.

Tables 3.12 and 3.13 show the performance on theWorkedFor andAdvisedBy

predicates respectively. As can be seen, in some cases, the sources learned with the

slightly modifiedBUSL, which perform worse than those of the originalBUSL in

the source domain, sometimes give better results when used for transfer.

Target Source SR2LR (modifiedBUSL) SR2LR (original BUSL)
IMDB UW-CSE 0.452 0.428
IMDB WebKB 0.468 0.503

UW-CSE IMDB 0.188 0.160
UW-CSE WebKb 0.174 0.228
WebKb IMDB 0.168 0.168
WebKb UW-CSE 0.295 0.167

Table 3.10: Comparison in terms of AUC between the performance ofSR2LR from
sources learned with the modified versus originalBUSL.
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Target Source SR2LR (modifiedBUSL) SR2LR (original BUSL)
IMDB UW-CSE -0.682 -0.816
IMDB WebKB -0.872 -0.609

UW-CSE IMDB -0.606 -0.839
UW-CSE WebKb -0.891 -0.618
WebKb IMDB -0.694 -0.693
WebKb UW-CSE -0.643 -1.687

Table 3.11: Comparison in terms of CLL between the performance ofSR2LR from
sources learned with the modified versus originalBUSL.

Target Source SR2LR (modifiedBUSL) SR2LR (original BUSL)
IMDB UW-CSE 0.239 0.028
IMDB WebKb 0.023 0.026

UW-CSE IMDB 0.030 0.035
UW-CSE WebKb 0.007 0.008

Table 3.12: Comparison in terms of AUC between the performance ofSR2LR from
sources learned with the modified versus originalBUSL on theAdvisedBy predi-
cate in UW-CSE andWorkedFor predicate in IMDB.

3.4 Summary

In this chapter, we presented two algorithms for transfer ofMLN structure.

The first one,RTAMAR , revises an MLN learned in a source domain and mapped to

the predicates of the target domain in the case when a substantial amount of target-

domain data is provided. The second algorithm,SR2LR, addresses the scenario

when target-domain data is severely limited. Our experiments demonstrated that

both of these algorithms lead to benefits in the accuracy and/or speed of learning.
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Target Source SR2LR (modifiedBUSL) SR2LR (original BUSL)
IMDB UW-CSE -0.727 -0.500
IMDB WebKb -0.700 -0.688

UW-CSE IMDB -0.280 -0.586
UW-CSE WebKb -0.696 -0.688

Table 3.13: Comparison in terms of CLL between the performance ofSR2LR from
sources learned with the modified versus originalBUSL on theAdvisedBy predi-
cate in UW-CSE andWorkedFor predicate in IMDB.
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Chapter 4

MLN Structure Learning from Scratch

In Chapter 3 we presented algorithms for improving learningof an MLN

via transfer of a model from a related source domain. In this chapter, we present

a novel algorithm that aims at improving MLN structure learning from scratch by

approaching the problem in a more bottom-up way. We call our algorithmBUSL for

Bottom-Up Structure Learning (Mihalkova & Mooney, 2007).

4.1 BUSL Overview

As pointed out by Richardson and Domingos (2006), MLNs serveas tem-

plates for constructing Markov networks when different sets of constants are pro-

vided. Because the cliques of the ground Markov network are defined by the

groundings of the same set of first-order clauses, the graph exhibits a high degree

of redundancy where the same pattern is repeated several times, corresponding to

each grounding of a particular clause.

Example 4.1.1.Considering Figure 2.4 (page 29) again, we observe that the pattern

of nodes and edges appearing above the twoCredits gliterals is repeated below

them with different constants. In fact, this Markov networkcan be viewed as an

instantiation of the template shown in Figure 4.1.
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Figure 4.1: Example Markov Network Template

The basic idea behindBUSL is to learn MLN structure by first creating a

Markov network template similar to the one shown in Figure 4.1 from the provided

data. The nodes in this template are used as components from which clauses are

constructed, and can contain one or more vliterals that are connected by a shared

variable. We will call these nodesTNodesfor template nodes. As in ordinary

Markov networks, a TNode is independent of all other TNodes given its immedi-

ate neighbors. Recall from Section 2.3.1, that the Hammersley Clifford Theorem

guarantees that we can specify any probability distribution compliant with the con-

ditional independencies implied by a particular graph by using functions defined

only over the cliques of the graph. In the case of MLNs where the functions are

expressed as first-order logic rules, this implies that to learn the structure, the algo-

rithm only needs to consider clause candidates that comply with the Markov net-

work template. In other words,BUSL uses the Markov network template to restrict

the search space for clauses only to those candidates whose literals correspond to

TNodes that form a clique in the template.
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Algorithm 4 Skeleton ofBUSL

for eachP ∈ P do
Construct TNodes for predicateP (Section 4.2.1)
Connect the TNodes to form a Markov network template (Section 4.2.2)
Create candidate clauses, using this template to constrainthe search (Sec-
tion 4.2.3)

end for
Remove duplicate candidates
Evaluate candidates using WPLL and add best ones to final MLN

The approach taken byBUSL follows the same philosophy as the graph-

centric learners discussed in Section 2.3.2 where the algorithm first focuses on

learning the conditional independencies among the variables before specifying the

features that define the probability distribution. This is in stark contrast toKD,

which takes a feature-centric approach and proceeds by directly learning the clauses

of the MLN.

Algorithm 4 gives the complete skeleton ofBUSL. Letting P be the set of

all predicates in the domain, the algorithm considers each predicateP ∈ P in turn.

A Markov network template isautomaticallyconstructed from the perspective of

the current target predicateP . Template construction involves creating variablized

TNodes, or components for clause construction, and determining the edges between

them. Even though the template aids the search for clauses, it does not carry all the

information about the MLN. Namely, it does not specify whether the vliterals par-

ticipating in a clause are positive or negative, or precisely what clauses correspond

to a given clique. For example, a three-node clique could correspond to one three-

literal clause or to three two-literal clauses, etc. Information about the weights is
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also excluded. To search for actual clauses, we generate clause candidates by fo-

cusing on each maximal clique in turn and producing all possible clauses consistent

with it. More specifically, these are all possible clauses oflength 1 tocliqueSize

containing only members of the clique. We can then evaluate each candidate using

the WPLL score (Kok & Domingos, 2005) (described on page 31).In the following

section we give the details of each step.

4.2 BUSL Details

A Markov network template is created for each predicate in the domain in

order to ensure that the relationships of all predicates areproperly modeled. Below,

we describe the process for the current target predicateP .

4.2.1 TNode Construction

TNodes contain conjunctions of one or more vliterals and serve as build-

ing blocks for creating clauses. Intuitively, TNodes are constructed by looking for

groups of constant-sharing gliterals that are true in the data and variablizing them.

Thus, TNodes could also be viewed as portions of clauses thathave true groundings

in the data. The process of TNode construction is inspired byrelational pathfinding

(Richards & Mooney, 1992), which we described in Section 2.2.3. The result of

running TNode construction forP is the set of TNodes and a matrixMP containing

a column for each of the created TNodes and a row for each gliteral of P . Each

entry MP [r][c] is a Boolean value that indicates whether the data contains atrue

grounding of the TNode corresponding to columnc with at least one of the con-
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stants of the gliteral corresponding to rowr. This matrix is used later to find the

edges between the TNodes. Algorithm 5 describes how the set of TNodes and the

matrixMP are constructed. The algorithm uses the following definitions:

Definition 4.2.1. Two gliterals areconnectedif there exists a constant that is an

argument of both of them. Similarly, two vliterals are connected if there exists a

variable that is an argument of both of them.

Definition 4.2.2. A chain of literals of lengthl is a list of l literals such that for

1 < k ≤ l thekth literal is connected to the(k − 1)th via a previously unshared

variable.

First, in line 1 the algorithm creates aheadTNode that consists of a vlit-

eral of P in which each argument is assigned a unique variable. This TNode is

analogous to the head in a definite clause; however, note thatour algorithm is not

limited to constructing only definite clauses. Next, in lines 2 to 22 the algorithm

considers each gliteralGP of P in turn. This includes both the true and the false

gliterals ofP , where the true gliterals are those stated to hold in the data, while the

rest are assumed to be false. A row of zeros is added toMP for GP , and the value

corresponding to the head TNode is set to 1 ifGP is true and to 0 otherwise (lines

4-7). The algorithm then proceeds to consider the setCGP
of all true gliterals in the

data that are connected toGP . For eachc ∈ CGP
, it constructs each possible TNode

based onc containing 1 tom vliterals. If a particular TNode was previously created,

its value in the row corresponding toGP is set to 1. Otherwise, a new column of

zeros is added toMP and the entry in theGP row is set to 1 (lines 13-19). Thus,
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Algorithm 5 Construct TNode Set
Input: P: Predicate currently under consideration

m: Maximum number of vliterals in a TNode
Output: TNodeVector: Vector of constructed TNodes

MP: Matrix of Boolean values
Procedure:

1: Make head TNode,headTN, and place it in position 0 ofTNodeVector
2: for each (true or false) gliteral,GP, of P do
3: Add a row of zeros toMP
4: currRowIndex = numRows(MP) − 1

5: if GP is truethen
6: SetMP[currRowIndex][0] = 1

7: end if
8: Let CGP

be the set of true gliterals connected toGP
9: for eachc ∈ CGP

do
10: for each possible TNode of length 1 tom based onc do
11: size = current length
12: newTNode = CreateTNode(c, GP, headTN, size) (Algorithm 6)
13: position = TNodeVector.find(newTNode)
14: if position is not foundthen
15: appendnewTNode to end ofTNodeVector
16: append a column of zeros toMP
17: position = numColumns(MP) − 1

18: end if
19: SetMP[currRowIndex][position] = 1

20: end for
21: end for
22: end for

each entry inMP indicates whether the TNode corresponding to its column could

be formed when considering the gliteral corresponding to its row.

Algorithm 6 shows theCreateTNode procedure. In line 1, the algorithm

variablizes the current gliteralc connected toGP by replacing the constantsc shares

with GP with their corresponding variables from the head TNode. If the TNode size
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Algorithm 6 CreateTNode
Input: GP: Current gliteral ofP under consideration

c: Gliteral connected toGP on which this TNode is based
headTN: Head TNode
size: Number of vliterals in the TNode

Output: newTNode: The constructed TNode
Procedure:

1: v = variablizec such that the constants shared withGP are replaced with their
corresponding variables fromheadTN and all others are replaced with unique
variables

2: CreatenewTNode containingv
3: previousGliteral = c

4: lastVliteralInChain = v

5: while length(newTNode) < size do
6: c1 = pick true gliteral connected topreviousGliteral via a previously

unshared constant
7: v1 = variablizec1 such that constants shared withGP or previousGliteral

are replaced with their corresponding variables fromheadTN or
lastVliteralInChain and all others are replaced with unique variables

8: Add v1 to newTNode

9: previousGliteral = c1
10: lastVliteralInChain = v1
11: end while

is greater than 1, the algorithm enters the while loop in lines 5-11. In each iteration

of this loop we extend the TNode with an additional vliteral that is constructed by

variablizing a gliteral connected to the gliteral considered in the previous iteration

so that any constants shared with the head TNode or with the previous gliteral are

replaced with their corresponding variables.

Example 4.2.1.Suppose that for our example domain, we are given the database

in Figure 4.2. LetP = Actor andm = 2 (i.e. at most 2 vliterals per TNode). The

head TNode isActor(A) . Figures 4.3 and 4.4 show the gliteral chains considered
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Actor(brando) Director(coppola)
WorkedFor(brando, coppola)

Credits(godFather, coppola) Credits(godFather, brando)

Figure 4.2: Database used in Example 4.2.1. The listed gliterals aretrue ; the rest
arefalse .
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Figure 4.3: An illustration of the chains considered when constructing TNodes
for Actor(brando) , which is a true gliteral. The solid edges show existing
relations between the constants. The dashed edges indicatepaths, where each path
is numbered. Paths 1 and 2 have length one, and paths 3 and 4 have length two.

in the main loop (lines 2-22) of Algorithm 5 for each gliteralof P .

Let us first focus on the case whenGP is Actor(brando) shown in

Figure 4.3. Connections 1 and 2 lead to the TNodesWorkedFor(A, B) and

Credits(C, A) respectively. Connection 3, frombrando to coppola via

theWorkedFor edge and then togodFather via theCredits edge, gives rise

to the 2-vliteral TNode[WorkedFor(A, D), Credits(E, D)] . Connec-

tion 4, which goes frombrando to coppola via godFather , motivates the

TNode [Credits(F, A), Credits(F, G)] . The following table lists the

values inMP at this point.
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Actor(A) WorkedFor(A, B) Credits(C, A) WorkedFor(A, D) Credits(F, A)
Credits(E, D) Credits(F, G)

1 1 1 1 1

Note that when constructing the TNodes, we replaced shared constants with

the same variables, and constants shared withGP with the corresponding variable

from the head TNode.

We did not consider the chain[Credits(godFather, brando) ,

WorkedFor(brando, coppola)] . This chain is invalid because the shared

constant,brando , has been shared previously (with the head TNode). We can use

this example of an invalid chain to provide some intuition for the requirement that

a chain can be extended only by sharing a previously unsharedconstant. Suppose

that this restriction did not exist. Then we would form the TNode

[Credits(X1,A), WorkedFor(A, X2)]

However, we notice that the vliterals composing this new TNode are present,

modulo variable renaming, in two separate TNodes found earlier (the second and

third TNodes in the table above). Therefore, constructing this TNode has the ef-

fect of producing two-vliteral TNodes consisting of vliterals that already appear in

single-vliteral TNodes.

Next, we consider Figure 4.4 that deals with the second iteration in which

GP is Actor(coppola) . Based on connection 5, we construct a new TNode

Director(A) and from connection 6 the TNodeWorkedFor(H, A) , which
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Figure 4.4: An illustration of the chains considered when constructing TNodes
for Actor(coppola) , which is a false gliteral. The solid edges show existing
relations between the constants. The dashed edges indicatepaths, where each path
is numbered. Paths 5, 6, and 7 have length one, and paths 8 and 9have length two.

Actor(A) WkdFor(A, B) Credits(C, A) Director(A) WkdFor(D, A) WkdFor(A, E), Credits(G, A), WkdFor(I, A),

Credits(F, E) Credits(G, H) Credits(J, I)

1 1 1 0 0 1 1 0
0 0 1 1 1 0 1 1

Table 4.1: Final set of TNodes and their correspondingMP matrix

differs from theWorkedFor TNode found earlier by the position of the vari-

able A shared with the head TNode. An appropriate TNode for connection 7

(Credits(C,A) ) already exists. Connection 8 gives rise to the two-vliteral TN-

ode [WorkedFor(I, A), Credits(J, I)] . A TNode for connection 9,

[Credits(F, A), Credits(F, G)] was constructed in the previous itera-

tion. Table 4.1 lists the final set of TNodes.

If TNodes are restricted to consist of only a single vliteral, BUSL would

construct only clauses whose literals all contain a shared variable (the one shared

with the head TNode). Such clauses can be viewed as revolvingaround a single
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entity, represented by the shared variable. Because TNodesof length 2 introduce

paths based on shared variables that do not appear in the headTNode, when such

TNodes are allowed,BUSL can construct clauses that extend beyond the relations of

a single entity. In general, larger values ofm mean longer TNodes that could help

build more informative clauses. However, a largerm also leads to the construction

of more TNodes, thus increasing the search space for clauses. We used a conserva-

tive setting ofm = 2. Note that this does not limit the final clause length to2. To

further reduce the search space, we require that TNodes withmore than one vliteral

contain at most one free variable (i.e. a variable that does not appear in more than

one of the vliterals in the TNode or in the head TNode). We did not experiment

with more liberal settings of these parameters but, as our experiments demonstrate,

these values worked well in our domains.

TNode construction is very much in the spirit of bottom-up learning. Rather

than producing all possible vliterals that share variableswith one another in all

possible ways, the algorithm focuses only on vliterals for which there is a true

gliteral in the data. Thus, the data already guides and constrains the algorithm.

This is related to bottom-up ILP techniques such as least-general generalizations

(LGG) and inverse resolution (Lavrac̆ & Dz̆eroski, 1994). However, as opposed to

LGG, our TNode construction algorithm always uses the generalization that leads

to completely variablized TNodes and unlike inverse resolution, the process does

not lead to the creation of complete clauses and does not use any logical inference

algorithms like resolution.

The procedure for constructing TNodes is also very similar to relational
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pathfinding (RPF) (Richards & Mooney, 1992), described on page 17. Like RPF, it

is based on searching for paths in the relational graph of thedata. However, unlike

RPF, these paths do not attempt to connect the constants of a gliteral of the target

predicate. Whereas in RPF the goal is to discover ways of proving true instances of

the target predicate, the goal of TNode construction is to discover features that can

be effective clause building blocks.

4.2.2 Adding the Edges

Once TNodes are constructed, we can search through the spaceof all possi-

ble clauses composed from them. This search space is alreadysmaller than the one

considered byKD because the algorithm uses only combinations of vliterals that

contain at least one true grounding in the data. Nevertheless, the number of possi-

ble clauses may still be prohibitively large. Moreover, as discussed in Section 4.1,

an exhaustive search is not necessary. Thus we proceed to complete the template

construction, by finding which TNodes are connected by edges. For this purpose,

it is useful to recall that the templates represent variablized analogs of Markov

networks. Finding the edges can therefore be cast as a Markovnetwork structure

learning problem where the TNodes are the nodes in the Markovnetwork and the

matrix MP provides training data. At this point, any Markov network learning al-

gorithm can be employed. We chose the Grow-Shrink Markov Network (GSMN)

algorithm by Bromberg et al. (2006), which we described in Section 2.3.2, because

it is simple but effective. Our choice was also motivated by the fact that GSMN

takes a graph-centric approach to the problem, which means that it learns just the
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structure of the Markov network, without any weights, whichare unnecessary in

our case.

4.2.3 Search for Clauses

Because the clauses in an MLN define functions over the cliques in the

ground MLN, we should only construct clauses from TNodes that form cliques

in the Markov network template. In other words, any two TNodes participating

together in a clause must be connected by an edge in the template. The head TNode

is required to participate in every candidate. Each clause can contain at most one

multiple-literal TNode and at most one TNode that contains asingle non-unary

literal. These further restrictions on the clause candidates are designed to decrease

the number of free variables in a clause, thus decreasing thesize of the ground

MLN during inference, and further reducing the search space. Complying with the

above restrictions, we consider each clique in which the head TNode participates

and construct all possible clauses whose length is less thanthe size of the clique by

forming disjunctions from the literals of the participating TNodes with all possible

negation/non-negation combinations.

After template creation and clause candidate generation are carried out for

each predicate in the domain, duplicates are removed and thecandidates are eval-

uated using the WPLL score (Kok & Domingos, 2005), describedon page 31. Re-

call that in order to compute this score, one needs to assign aweight to each clause.

Weight learning is performed using L-BFGS, also used by Richardson and Domingos

(2006) and also used inKD. After all candidates are scored, they are considered for
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addition to the MLN in order of decreasing score. To reduce overfitting and speed

up inference, only candidates with weight greater thanminWeightare considered.

Candidates that do not increase the overall WPLL of the currently learned MLN are

discarded.

4.3 Experimental Setup

We compared the performance ofBUSL to that of KD in the same three

relational domains—IMDB, UW-CSE, and WebKB—that we described in Sec-

tion 3.2.2. It is important to note that our results on the UW-CSE dataset are not

comparable to those presented by Kok and Domingos (2005) because due to pri-

vacy issues we only had access to the published version of this data, which differs

from the original (Personal communication by Stanley Kok).

As in Chapter 3, we measured the performance in terms of the AUC and

CLL and generated learning curves using a leave-1-mega-example-out approach.

The parameter settings for runningKD from scratch were identical. As before, all

timing runs within the same experiment were carried out on the same dedicated ma-

chine. We implementedBUSL as part of the Alchemy package (Kok et al., 2005).

We setBUSL’s minWeight = 0.5 for all experiments and observed that the op-

eration of the algorithm is not very sensitive to other settings of this parameter.

Even though bothBUSL andKD have a parameter calledminWeight, they use it

in different ways and the same value is therefore not necessarily optimal for both

systems. Thep-value for theχ2 test used by GSMN was set to0.85 and was not

further optimized.
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4.4 Experimental Results

Figures 4.5-4.7 show learning curves in the three domains.BUSL improves

over the performance ofKD in all cases except for one point in terms of AUC.

Figure 4.6 additionally plots the AUC and CLL for a system that performs

weight learning over the knowledge base provided as part of the UW-CSE dataset

(Hand-KB). Hand-KB was generated by asking volunteers to express in first-order

logic general knowledge about academia (Richardson, 2004). In terms of AUC,

this system’s performance is significantly worse than that of BUSL, and in terms of

CLL, it performs as well asBUSL.

In Figure 4.7, we observe that even thoughKD is improving its performance

in terms of AUC, its CLL score decreases. This is most probably due to the ex-

tremely small relative number of true gliterals in the domain in which the CLL can

be increased by simply predictingfalse for each query.

Another observation that requires explanation is that the learners improve

by only tiny amounts, if at all, after the first point on the learning curve. This oc-

curs because in our experience, for both learners, additional data improves only the

WPLL estimate (and thus the evaluation of new clause candidates) but does not

have a great effect on the clauses that are proposed. In particular, in BUSL candi-

dates are based on the dependencies among the TNodes, and newdata introduces

few new such dependencies. This, however, may not be the casein other domains.

Figures 4.5-4.7 give an idea of how the learners perform overall the pred-

icates of the domain. It is also interesting, however, to seethe performance of the
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Figure 4.5: Accuracy in IMDB domain. a) AUC b) CLL
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Predicates CLL BUSL CLL KD AUC BUSL AUC KD

director -0.24±0.12 -1.44±0.12 0.91±0.03 0.51±0.01
actor -0.01±0.00 -0.59±0.08 1.00±0.00 0.88±0.01
movie -1.66±0.17 -2.42±0.25 0.27±0.00 0.19±0.00
gender -0.69±0.05 -3.33±0.33 0.48±0.01 0.36±0.00

workedUnder -0.07±0.00 -0.24±0.02 0.26±0.00 0.10±0.00
genre -0.18±0.05 -1.10±0.04 0.60±0.05 0.34±0.02

samePerson -0.03±0.00 -0.03±0.01 1.00±0.00 0.89±0.01
sameMovie -0.04±0.00 -0.11±0.03 1.00±0.00 0.99±0.00
sameGenre -0.05±0.00 -0.44±0.23 0.80±0.00 0.63±0.04
sameGender -0.04±0.00 -0.14±0.07 1.00±0.00 0.99±0.01

Table 4.2: Per-predicate results from last point on learning curve in IMDB

systems for each predicate in the domains individually. Tables 4.2-4.4 show these

results for AUC and CLL for the last point on the learning curves. Note that the per-

formance for some of the predicates, such asTaughtBy in UW-CSE is extremely

low. This is due to the fact that, given the information provided during testing, it is

impossible to reliably predict the value of these predicates.

Table 4.5 shows the average training time over all learning runs for each

system, and the average number of candidate clauses each learner constructed and

evaluated over all runs. As can be seen,BUSL constructed fewer candidates and

trained much faster thanKD. BUSL spends the main portion of its training time

on computing the WPLL score of the generated candidates. This process takes

longer in domains like WebKB that contain a great number of constants. On the

other hand, we expectBUSL’s savings in terms of number of generated candidates

to be greater in domains, such as UW-CSE, that contain many predicates because

the large number of predicates increases the number of candidate clauses gener-
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Predicates CLL BUSL CLL KD AUC BUSL AUC KD

taughtBy -0.02±0.00 -0.03±0.00 0.01±0.00 0.00±0.00
courseLevel -0.82±0.08 -2.95±0.37 0.48±0.03 0.28±0.01

position -0.16±0.03 -1.33±0.08 0.33±0.03 0.09±0.02
advisedBy -0.04±0.01 -0.12±0.01 0.02±0.00 0.00±0.00

projectMember -0.02±0.00 -0.01±0.01 0.00±0.00 0.00±0.00
phase -0.35±0.03 -0.75±0.13 0.32±0.01 0.26±0.01

tempAdvisedBy -0.02±0.00 -0.09±0.01 0.01±0.00 0.00±0.00
yearsInProgram -0.22±0.04 -0.37±0.04 0.16±0.02 0.10±0.01

tA -0.03±0.00 -0.02±0.00 0.00±0.00 0.00±0.00
student -0.06±0.02 -1.58±0.10 1.00±0.00 0.59±0.03

professor -0.07±0.05 -1.51±0.08 0.98±0.01 0.16±0.03
samePerson -0.03±0.00 -0.06±0.01 1.00±0.00 0.79±0.00
sameCourse -0.04±0.00 -0.29±0.06 1.00±0.00 0.41±0.00
sameProject -0.04±0.00 -0.38±0.11 1.00±0.00 0.60±0.00
publication -0.18±0.02 -0.20±0.02 0.10±0.01 0.05±0.00

Table 4.3: Per-predicate results from last point on learning curve in UW-CSE

ated byKD. These considerations explain why the smallest improvement in speed

is achieved in WebKB that contains the least number of predicates and the great-

est number of constants. The greatest speed-up is in IMDB where BUSL created

the smallest number of candidates, and each candidate couldbe evaluated quickly

because of the small number of constants in this domain.

Based on the much smaller number of candidate clauses considered by

BUSL, one might expect a larger speed-up. Such a speed-up is not observed be-

cause of optimizations within Alchemy that allow fast scoring of clauses for a fixed

structure of the MLN. BecauseKD evaluates a large number of candidates with a

fixed structure, it can take advantage of these optimizations. On the other hand,

after initially scoring all candidates,BUSL attempts to add them in decreasing or-
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Predicate CLL BUSL CLL KD AUC BUSL AUC KD

student -0.01±0.00 -0.81±0.09 1.00±0.00 0.93±0.00
samePerson -0.02±0.00 -0.01±0.00 0.99±0.00 0.88±0.01

faculty -0.02±0.00 -2.78±0.13 1.00±0.00 0.56±0.00
project -0.13±0.01 -0.17±0.02 0.03±0.00 0.02±0.00

courseTA -0.03±0.00 -0.03±0.00 0.01±0.00 0.01±0.00
courseProf -0.03±0.00 -0.04±0.01 0.02±0.00 0.01±0.00

Table 4.4: Per-predicate results from last point on learning curve in WebKB

Training time # candidates
Dataset BUSL KD Speed-up BUSL KD

IMDB 4.59 62.23 13.56 162 7558
UW-CSE 280.31 1127.48 4.02 340 32096
WebKB 272.16 772.09 2.84 341 4643

Table 4.5: Average training time in minutes, average speed-up factor, and average
number of candidates considered by each learner.

der of score to the MLN, thus changing the MLN at almost each step, which slows

down the scoring of the structure.

Finally, we checked the importance of adding the edges in Section 4.2.2.

This step can, in principle, be avoided by simply producing afully connected

Markov network template. Recall that the goal of this step isto decrease the num-

ber of vliterals that could participate together in a clause. In Table 4.6 we show

statistics on the number of TNodes constructed by the algorithm in each of the do-

mains, as well as the proportion of TNodes that end up in the Markov blanket of

the head TNode. As can be seen, the number of neighbors of the head TNode in the

Markov network template is dramatically smaller than the total number of TNodes
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Data set IMDBUW-CSEWebKB
Average number of TNodes constructed 31.44 70.70 18.83
Average proportion of TNodes in MB of head TNode0.12 0.14 0.22
Maximum number of TNodes constructed 56 144 28
Maximum size of MB of head TNode 17 41 15

Table 4.6: Statistics on the average number of TNodes constructed, the average
proportion of TNodes that appear in the Markov blanket of thehead TNode, the
maximum number of TNodes constructed, and the maximum Markov blanket size,
over the predicates in all learning runs in each domain.

discovered. This naturally leads to a smaller number of candidate clauses that need

to be considered.

As mentioned in Section 2.4.2 (page 31), at the time of writing of this

manuscript, Kok and Domingos (2009) have just introducedLHL , a new algorithm

for MLN structure learning, which, likeBUSL, embraces a bottom-up perspec-

tive. BecauseLHL performs relational pathfinding (Richards & Mooney, 1992) on

a lifted hypergraph, it is able to search for longer paths than BUSL in a reason-

able amount of time, which enablesLHL to achieve excellent performance on large

datasets, such as Cora (Bilenko & Mooney, 2003). As reportedby Kok and Domingos

(2009), using a slightly different experimental set-up from ours,LHL has accuracy

comparable to that ofBUSL on the UW-CSE dataset, but shorter training time; on

IMDB, it outperformsBUSL in terms of accuracy, but takes longer to train. Results

are not reported for the WebKB dataset.
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Chapter 5

Using MLNs to Resolve Ambiguous Web Queries

In Chapter 3, we considered approaches for overcoming one way in which

training data may be limited, when information only about a small group of entities

is available. In this chapter, we demonstrate how through the use of relational

information we can overcome a limitation on the amount of entity-specific data that

is provided. In other words, here we assume that very little is known about each

entity and we develop an approach that bases its predictionson relations among

the entities. We focus on a particular application, Web query disambiguation, in

which the task is to determine the intent of a search-engine user when she enters a

potentially ambiguous query. We consider a more privacy-aware setting in which

the only information available about any particular user isthat captured in a short

search session of 4–6 previous searches on average.

5.1 Motivating Web Query Disambiguation from Short Sessions

Personalizing a user’s Web search experience has become a vibrant area of

research in recent years. One of the most actively researched topics in this area is

Web query disambiguation, or automatically determining the intentions and goals

of a user who enters an ambiguous query. This is not surprising, given the fre-
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quency of ambiguous searches and the unwillingness of usersto enter long and

descriptive queries. For example, Jansen and Spink (2006) found that about30% of

search queries, submitted to several engines, consisted ofa single word. Further-

more, Sanderson (2008) reports that anywhere between roughly 7% and23% of the

queries frequently occurring in the logs of two search engines are ambiguous, with

the average length of ambiguous queries being close to one.

Ambiguity exists not only in cases such as the all-too-familiar “jaguar” ex-

ample (which can be a cat, car, or operating system), but alsoin searches that do

not appear ambiguous on the surface. Queries that are commonly considered unam-

biguous often become ambiguous as a result of the wealth of Web sources, which

examine different aspects of a given topic. For example, as we observed in our data,

a search for “texas”1 may be prompted by at least two different kinds of intentions.

In one session, a user who had first searched for “george w. bush” proceeded to

search for “texas” and selectedwww.tea.state.tx.us , thus indicating an inter-

est in Texas government agencies. In another session, the user intended to learn

about travel to Texas because repeated searches for “georgia travel” were followed

by a search for “texas” and a click towww.tourtexas.com . This indicates that

even a query, such as “texas” that normally refers to a singleentity, may become

ambiguous.

Most approaches to Web query disambiguation leverage a user’s previous

interactions with the search engine to predict her intentions when entering an am-

1We write these queries in lower-case because this is how theywere typed by the searchers in
our data set.
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biguous query. Typically, the actions of each user are logged over long periods

of time (e.g., Sugiyama, Hatano, & Yoshikawa, 2004; Sun, Zeng, Liu, Lu, & Chen,

2005; Dou, Song, & Wen, 2007). While techniques that assume the availability of

long search historiesfor each userare applicable in some situations, in many cases

such approaches may raise privacy concerns and may be difficult to implement for

pragmatic reasons. After the release of AOL query log data allowed journalists

to identify one user based on her searches (Barbaro & Zeller,2006), many people

have become especially wary of having their entire search histories recorded by

search engines. This has led to increased interest in the ethical issues surrounding

user data collection (e.g., Conti, 2006), and the appearance of search engines that

expressly do not store any user activity information, such as Cuil.2

However, in order to determine user intent when typing an ambiguous query,

at least some information must be available about the user. We present an approach

that bases its predictions only on short glimpses of user search activity, captured

in a brief search session (Mihalkova & Mooney, 2009a). Our approach relates the

current search session to previousshortsessions ofotherusers based on the search

activity in these sessions. Crucially, our approach doesnot assume the availability

of user identifiers of any sort (i.e. IP addresses, login names, etc.) and thus such

information, which could allow user searches to be tracked over long periods of

time, does not need to be recorded when our approach is used.

As an example, consider the query “scrubs,” which could refer either to the

2http://www.cuil.com/
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—Search Session 1—
98.7 fm → www.star987.com/main.html
kroq → www.kroq.com/
scrubs → scrubs-tv.com

—Search Session 2—
huntsville hospital → www.huntsvillehospital.org
ebay.com → ebay.com
scrubs → www.scrubs.com

Table 5.1: Two sessions in which the users searched for the query “scrubs.”

popular television show or to a type of medical uniform. Table 5.1 juxtaposes the

users’ actions in two sessions. The sessions are short, witheach containing only

two searches preceding the ambiguous query; nevertheless,this short glimpse of

the users’ actions is sufficient to provide an accurate idea of the users’ intentions

because by examining historical data, one may discover thatpeople who search for

radio stations are probably “ordinary” users and would therefore be interested in the

television show. On the other hand, by relating Session 2 to sessions of other users

who searched for medical-related items, we may be able to predict that the second

user has more specialized interests.

Our proposed setting is appealing also from a pragmatic standpoint because

it does not require search engines to store, manage, and protect long user-specific

histories. Identifying users across search sessions is another difficulty arising from

methods based on long user-specific search histories. One possibility, to require

users to log in before providing personalized search, may becumbersome. The

alternative of using as an identifier the IP address of the computer from which the

search was initiated is also unsatisfactory, especially incases when entire organiza-
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tions share the same IP address or when all members of a household search from the

same computer. Disambiguation techniques that explicitlydo not use such identi-

fiers and instead rely only on information from brief sessions avoid such difficulties.

When so little is known about a searcher, the problem of querydisambigua-

tion becomes very challenging. In fact, it has previously been argued that “it is

difficult to build an appropriate user profile even when the user history is rich”

(Dou et al., 2007). We develop an approach that successfullyleverages the small

amount of information about a user captured in a short searchsession to improve

the ranking of the returned search results. Our approach uses MLNs to exploit the

relations between the session in which the ambiguous query is issued and previous

sessions.

SRL techniques are appealing for the problem of Web query disambigua-

tion for two main reasons. First, the data is inherently relational—there are several

types of entities: queries, clicked URLs, and sessions, which relate to each other in

a variety of ways, e.g., two sessions may be related by virtueof containing clicks to

the same URLs or searches for similar queries; queries may berelated by sharing

words or by being followed by clicks to the same URLs, and so on. SRL techniques

allow us to learngeneralmodels of the ways in which the various types of entities

interact, thus overcoming the problem that not much may be known about any par-

ticular entity, i.e. a particular URL. Second, data recording human interactions with

a search engine is likely to be noisy. SRL models allow for probabilistic inference,

helpful when reasoning from noisy data.

Before we describe the details of our approach, we discuss some related

105



work.

5.2 Related Work

Web query disambiguation and personalized search are important problems,

and have been studied under a variety of settings and assumptions. We review some

of this work and draw distinctions between existing research and the work presented

in this chapter.

5.2.1 Web Search Personalization

An early personalization techniques was developed by Fitzpatrick and Dent

(1997). To disambiguate a query, their approach uses records of similar past queries

over all users in order to include additional search terms inthe original query, thus

narrowing down the search. Unlike these authors, we are interested in re-ordering

the results returned by the search engine rather than modifying that set by providing

additional search terms.

Several authors have proposed techniques addressing the case where, for

each particular user, a relatively long history of that user’s interactions with the

search engine is available. Sugiyama et al. (2004) present apersonalization method

that builds a user preference model by modeling separately the long-term and “to-

day’s” user interests. The user profile is viewed as a weighted average of these two

components. In addition to relying on long-term records of user activity, their ap-

proach also uses the content of browsed web pages when constructing user profiles.

In contrast, we are interested in a more light-weight approach that does not neces-
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sarily use page content. Sun et al. (2005) use spectral methods to perform person-

alization by organizing the data into a three-dimensional tensor comprised of users,

queries, and clicked pages. In a related vein, Sun, Wang, Shen, Zeng, and Chen

(2006) extended co-clustering (Dhillon, Mallela, & Modha,2003) to work with three-

dimensional tensors and simultaneously clustered users, queries, and pages. Be-

cause of the sparsity of the data, these tensor-based methods are unlikely to be ef-

fective in the case we study, where each user clicks on only a few pages and enters

only a handful of queries.

A comprehensive empirical study of several Web search personalization

techniques is presented by Dou et al. (2007). These techniques also use longer-

term histories (up to 12 days) of the same user. The authors find that the best-

performing methods are based on the intuition that the Web pages most relevant

to a user are those clicked frequently in the past by that useror by related users,

where user similarity is measured by estimating user membership in a pre-defined

set of categories. Such a strategy is unlikely to work in our setting because the ses-

sions in our data represent one-time interactions that usually do not contain repeated

clicks to the same URL. Joachims (2002) and Radlinski and Joachims (2005) use a

clever method for deriving constraints about user preferences by observing whether

or not the user clicked on or skipped over particular search results. These prefer-

ences are then used to train a system for ranking search results according to user’s

preferences. Another related project (Teevan, Dumais, & Horvitz, 2005) relies on

sensitive user information to personalize Web search by constructing a user profile

from long-term observations on the user’s activities, ranging from browsing history
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to e-mail. In general, all previous work discussed in the last two paragraphs makes

the assumption that long-term information abouteach useris available. In contrast,

we study the setting where personalization is performed based on records of very

short interactions with the search engine.

To the best of our knowledge, the only previous work that targets query

disambiguation from short sessions is that of Almeida and Almeida (2004) in which

users are identified as belonging to a set of communities in order to determine their

interests. The authors experimented with data from online bookstore search sites for

computer science literature, and their approach is tailored for situations when user

interests fall into a small set of categories, organizing users into 10 communities.

While in a more restricted application of search, such as specialized book search,

this small number of communities may be sufficient to model different aspects of

user interests, when, as in our case, the goal is to disambiguate queries in a general-

purpose search engine, a small number of communities is likely to be insufficient to

effectively model the variety of user interests, and allowing for more communities

may be prohibitively costly.

Privacy-aware Web personalization has been addressed by Krause and Horvitz

(2008), whose method considers the privacy cost of a particular piece of user infor-

mation and explicitly models the improvement in personalization versus the cost of

the information that was used. While the ability to trade offperformance with cost

is highly desirable, their method relies on more information about the user than is

available in our setting.
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5.2.2 Learning to Rank

Learning for Web query disambiguation is also related to work on learning

to rank (e.g., Burges et al., 2005). The latter task is to induce a model that produces

good rankings of all the results relevant to a query, withouttargeting the specific

interests of the current user. Query disambiguation can be viewed as auxiliary to

this process, where we take the most relevant results, as determined by the general

ranker, and re-order them for each user to better target the interests of that user. As

in Web query disambiguation, models that incorporate implicit user feedback can

lead to better results (e.g., Agichtein, Brill, & Dumais, 2006).

5.2.3 Determining User Intentions

Query disambiguation is also related to determining user goals and inten-

tions. One of the earliest systems is Letizia (Lieberman, 1995), which operates on a

client machine and observes the browsing behavior of a user.Upon request, Letizia

can provide a ranking of the hyperlinks in a page based on its predictions of the

user’s interest. Another early system (Lesh & Etzioni, 1995) determines the goal of

a user from an observed sequence of actions. These early approaches, however, do

not incorporate a learning component.

The TaskPredictor (J. Shen, Li, Dietterich, & Herlocker, 2006) learns to pre-

dict the current task of a user based on the properties of the currently open window,

or of an arriving e-mail message. Because training this system requires poten-

tially sensitive information, such as e-mail and active documents, it is intended

to be run on the user’s local machine. In Web personalization, it is frequently
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necessary to determine whether a user issues a query to a general search engine

with a particular goal in mind, such as job search, product search, or restaurant

search. In this way, the search engine can deploy a service that was especially de-

veloped for that task. Query intent is resolved by classifying each query according

to whether it indicates general or special interest (e.g., D. Shen, Sun, Yang, & Chen,

2006; Li, Wang, & Acero, 2008).

5.2.4 Producing Diverse Result Sets

Orthogonal to disambiguation is the issue of producing a diverse set of doc-

uments for a given query. Recent work in this area includes that of Chen and Karger

(2006), whose technique ranks results so as to cover as many different aspects of

interest as possible, and that of Yue and Joachims (2008) whopropose a technique

based on the structural SVM framework. A related area is thatof clustering search

results in groups of common topic. For example, Wang and Zhai(2007) use search

log data to learn useful aspects of queries in order to cluster them. The ability to

disambiguate user intent complements these contributionsbecause it would allow

the most relevant cluster, or the most relevant results froma diverse set, to be placed

ahead of all others on the search page.

5.2.5 Collaborative Filtering

Our proposed approach is also related to work in collaborative filtering

where the goal is to suggest items that would be of interest toa user, based on

that and other users’ previous preferences. Early comparative studies of collabora-
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tive filtering algorithms include (Breese et al., 1998; Herlocker et al., 1999). More

recently, Popescul et al. (2001) and Melville et al. (2002) proposed approaches that

combine collaborative and content-based information in forming recommendations.

However, these approaches have not been applied to personalizing Web search.

5.3 Proposed Approach

Our general approach follows that of previous applicationsof MLNs to spe-

cific problems, (e.g., Poon & Domingos, 2007): we hand-codedthe structure of the

model as a set of first-order formulae and learned weights forthese formulae from

the data. This approach is also analogous to that commonly pursued in the proba-

bilistic graphical model literature, where the dependencies among the variables of a

graphical model are manually specified and then parameters that pin down the exact

probability distribution are learned from the data. The advantage of using MLNs,

however, is that they come with effective general-purpose learning and inference

algorithms; thus one does not need to re-derive specializedinference techniques for

every new model.

The key idea behind our approach is to relate the current,active, sessionA

in which an ambiguous queryQ is issued to previous,background, sessions from

historical data, where it is assumed that both the active session and the background

sessions are short. Sessions are related by sharing varioustypes of information. We

define the following predicates to capture these relationships. Since every train-

ing/testing example refers to a single (Q,A) pair,A andQ are implicit in the exam-

ple and do not need to appear as arguments of the predicates.
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• Result(R): R is a search result forQ.

• ChoseResult(S, R): Background sessionS clicked onR after searching for

Q.

• ClickOn(R): User in sessionA clicks on resultR in response to the search

for Q.

• SharesClick(S, D): Background sessionS andA share a click to URL with

hostnameD.

• SharesKeywordBtwnClicks(S, K): Background sessionS and A share a

keywordK, found in the hostnames of clicked URLs in each of the sessions.

• SharesKeywordBtwnClickAndSearch(S, K): Background sessionS andA

share a keywordK, found in the hostname of a clicked URL inA and a search

in S.

• SharesKeywordBtwnSearchAndClick(S, K): Background sessionS andA

share a keywordK, found in a search inA and the hostname of a clicked URL

in S.

• SharesKeywordBtwnSearches(S, K): Background sessionS andA share a

keywordK that appeared in searches in both sessions.

• ClicksShareKeyword(R, D, K): KeywordK appears in the hostname of both

resultR and previous clickD from sessionA.
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• ClickAndSearchShareKeyword(R, S, K): Keyword K appears in the host-

name of resultR and in previous search queryS from sessionA.

Figure 5.1 illustrates the predicates from the above set that are used to re-

late two sessions. The last two predicates capture information local to the active

session. In the active sessionA, only the clicks and searches temporallypreceding

Q are used. For the predicates in which a keyword relates two sessions, we used

only those keywords that appeared at least100 times (corresponding to removing

keywords that appeared less than0.00083% of the time) and at most10, 000 times

(corresponding to removing the top61 most popular keywords) over the training

portion of our data set. This was done in order to avoid rare ormisspelled key-

words and to make the size of the data more manageable by excluding uninforma-

tive overly-common ones. We did not experiment with other cut-off values. We

describe how the set of keywords is formed and how keywords are extracted from

URLs in Section 5.4.

The goal is to predict theClickOn(R) predicate, given as evidence the values

of the remaining ones. The search results available for a given query are then ranked

by the predicted probability that the user will choose to click on each of them.

5.3.1 Model Structure

This section describes the formulae used in our MLN models.

Collaborative Formulae:The collaborative formulae, shown in lines 1-5

of Table 5.2, draw inferences about the interests of the active user based on the
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Active Session

huntsville hospital

huntsvillehospital.org

ebay

ebay.com

scrubs

???

huntsville school

...

scrubs

scrubs-tv.com

...

ebay.com

hospitallink.com

...

sharesKeywordBtwnSearches

sharesKeywordBtwnClickAndSearch

sharesKeywordBtwnClicks

sharesClick

choseResult

sharesKeywordBtwnSearchAndClick

Figure 5.1: An illustration of predicates that relate sessions. Tokens in boxes rep-
resent queries, whereas tokens preceded by an arrow represent the clicked result
for the preceding query. Theactivesession, on the left, is related to some of the
backgroundsessions, on the right, by shared clicks or keywords. The tokens that
are shared in each case are circled. Not all possible relations are drawn in order to
reduce clutter.

choices made by related users from background sessions. Forexample, formula 1

establishes a relationship between the event that the active user chooses resultR

and the event that the user in a previous sessionS, related to the active session by

sharing a click to a URL with hostnameD, chose resultR after searching for the

current ambiguous query. Thus this formula exploits one type of relation between

the active session and background sessions to provide evidence of the active user’s

intentions. This formula is always false when one of the firstthree evidence predi-

cates is false, and in such cases it does not influence the probability that the active

user chooses a particular search result. Thus, this formulaplays a role only for

background sessions that share clicks with the active session and chose a particular

resultR. The larger the number of such sessions, the stronger the belief that the
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1: Result(R) ∧ SharesClick(S, D)
∧ChoseResult(S, R) ∧ ClickOn(R)

2: Result(R) ∧ SharesKeywordBtwnClicks(S, K)
∧ChoseResult(S, R) ∧ ClickOn(R)

3: Result(R) ∧ SharesKeywordBtwnClickAndSearch(S, K)
∧ChoseResult(S, R) ∧ ClickOn(R)

4: Result(R) ∧ SharesKeywordBtwnSearchAndClick(S, K)
∧ChoseResult(S, R) ∧ ClickOn(R)

5: Result(R) ∧ SharesKeywordBtwnSearches(S, K)
∧ChoseResult(S, R) ∧ ClickOn(R)

6: Result(R) ∧ ChoseResult(S, R) ∧ ClickOn(R)
7: Result(R) ∧ ClicksShareKeyword(R, D, K) ∧ ClickOn(R)
8: Result(R) ∧ ClickAndSearchShareKeyword(R, S, K) ∧ ClickOn(R)
9: Result(R1) ∧ Result(R2) ∧ R1 6= R2

∧ClickOn(R1) ⇒ ¬ClickOn(R2)

Table 5.2: Formulae included in the model.

active user will also pickR; alternatively, the larger the number of such sessions,

the greater the penalty for not pickingR in the active session.

Formulae 2-5 encode analogous dependencies using each of the remaining

session-relating predicates.3

Popularity Formula:Formula 6 in Table 5.2 encodes the intuition that the

user will click the result that was the most popular among background users that

searched for this ambiguous query. As before, the result forwhich there are the

largest number of clicks in background data, and thus the largest number of ground-

ings of this formula that are not falsified by the evidence, will have the largest prob-

3Although it may seem more natural to write these formulae as implications, i.e.Result(R) ∧
SharesClick(S, D)∧ ChoseResult(S, R) ⇒ ClickOn(R), we found that defining the structure in
this way leads to instability during weight learning.
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ability of being clicked.

Local Formulae: Formulae 7-8 in Table 5.2 use information local to the

active session to predict the user’s preferences. Formula 7(8) states that the user

will click a result that shares keywords with a previous result (search) from the

active session. We clarify that keywords werenotextracted from the pages to which

a URL points, but only from the URL itself because we are interested in developing

a light-weight re-ranker. Because in our setting sessions are very short, we do not

expect the local formulae to contribute much to the overall model performance. We

include them in order to verify this.

Balance Formula:Finally, formula 9 in Table 5.2 sets up a competition

among the possible results by stating that if the user clicksone of the results, the

user will not click another one. This formula prevents all possible results from

obtaining a very high probability of being clicked. This makes the model more dis-

criminating and allows the same set of weights to perform well even as the number

of groundings of the other formulae varies widely from one active session to the

next.

It is worth noting that all of these formulae encode “rules ofthumb” and

useful features, which we expect will hold in general, but may sometimes be vio-

lated, e.g., the balance formula is violated when a user clicks more than one result

for a query. The ability of MLNs to combine such varied sources of information

effectively and in a principled way is one of the main considerations that motivated

our choice of model.
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Using these formulae, we defined three MLNs:

MLN 1 – Purely Collaborative : Contains only the collaborative formulae (1-5)

and the balance formula (9).

MLN 2 – Collaborative and Popularity : Contains formulae 1-6 and the balance

formula (9).

MLN 3 – Collaborative, Popularity, and Local : Contains all formulae. It can

thus be viewed as a mixed collaborative-content-based model (e.g., Popescul et al.,

2001; Melville et al., 2002).

5.3.2 Weight learning

To learn weights for the structures defined above, we used thecontrastive

divergence algorithm (CD) described by Lowd and Domingos (2007). CD can be

viewed as a voted-perceptron-like gradient descent algorithm in which the gra-

dient for updating the weight of formulaCi is computed as the difference be-

tween the number of true groundings ofCi in the data and the expected number

of true groundings ofCi, where the expectation is computed by carrying out a

small number of MCMC steps over the model using the currentlylearned weights.

Like Lowd and Domingos (2007), we computed the expectationswith MC-SAT

(Poon & Domingos, 2006). We used the implementations of these algorithms in

the Alchemy package (Kok et al., 2005), except that we adapted the existing im-

plementation of CD so that learning can proceed in an online fashion, considering

examples of sessions containing ambiguous queries one by one. This was done be-

cause otherwise our data was too large to fit in memory. We set the learning rate to
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0.001 and the initial weight of formulae to0.1 and kept all other parameters at their

default values. Parameter values were selected on a validation set, strictly disjoint

from our test set.

5.4 Data and Methodology

We used data provided by Microsoft Research containing anonymized query-

log records collected from MSN Search in May 2006. The data consists of times-

tamped records for individual short sessions, the queries issued in them, the URLs

clicked for each query, the number of results available for each query and the po-

sition of each result in the ranked results. We removed queries for which nothing

was clicked. The average number of clicked results per session, over all sessions in

the data, is3.28. The data does not specify what criteria were used to organize a

set of user interactions into a session; e.g., we do not know how multiple open tabs

in a browser were treated. Although some of the sessions may belong to the same

users, the data excludes this information through the lack of user-specific identi-

fiers. This dataset therefore perfectly mirrors the scenario of disambiguating user

intent from short interactions that we address in this research. Because there is a

one-to-one correspondence between users and sessions, we will use these two terms

interchangeably.

The data has two main limitations. First, it does not state which search

queries are ambiguous. Automatically detecting ambiguityfrom user behavior is

an interesting research question (e.g., Teevan, Dumais, & Liebling, 2008) but is not

the focus of this work. We therefore employed a simple heuristic to obtain a (pos-
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sibly noisy) set of ambiguous queries, using DMOZ (www.dmoz.org ): a query

string is considered ambiguous if, over all URLs clicked after searching for this ex-

act string, at least two fall in different top-level categories, according to the DMOZ

hierarchy. This heuristic does not require any human effortbeyond that already

invested in constructing DMOZ. Unfortunately, we could notinclude DMOZ cat-

egory information into our models because many Web pages arenot classified in

the hierarchy. We limited ourselves to strings containing up to two words, thus ob-

taining6, 360 distinct ambiguous query strings. Limiting the length of potentially

ambiguous queries to two was motivated by the fact that most ambiguity occurs in

short queries. For example, Sanderson (2008) found that theaverage length of am-

biguous queries in two search log datasets ranges from1.02 to 1.26 words. Queries

of length at most two constituted43.7% of all queries in our data. Of these queries,

using the above method, we identified2.4% as ambiguous, which agrees with the

statistics reported by Sanderson, who found that between0.8% and 3.9% of all

queries are ambiguous (Sanderson, 2008).4

Another limitation of our data is that it does not list all theURLs presented

to the user after a search but just the ones on which the user actually clicked. During

testing, this is a problem because we do not know what possibilities to present

to the system. To overcome this, we assumed that the set of allURLs clicked

after searching for a particular ambiguous query string, over the entire dataset, was

the set of results presented to the user. Our approach contrasts with that used in

4In Section 5.1, we cited Sanderson’s findings forfrequently occurringqueries, whereas here we
refer to his findings overall queries.
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previous work, e.g., that of Dou et al. (2007), in which missing possible results lists

are generated by separately querying the MSN search engine (on which data was

collected) for each query. Although the queries were performed less than a month

after the data was collected, the authors found that676 queries from4, 639 “lost

the clicked web pages in downloaded search results.” Because in our case almost

3 years have passed since the MSN06 data was collected, we preferred the simpler

approach based on the available data. With this method, the average number of

possible results for an ambiguous query string was9.10. Figure 5.2 shows the

distribution over the number of ambiguous queries for whichwe have a particular

number of possible results. Although this heuristic is imperfect, it is likely to bias

the resultsagainstour proposed solution—since every possible result was found

to be relevant by at least one user, our systems cannot get high scores by simply

separating the useful results from the totally irrelevant ones.

Figure 5.3 shows the distribution over the number of clicks preceding an

ambiguous query in our test data. As can be seen, our test sessions, are indeed very

short.

Several of the predicates we define use keywords. We next describe how

we generated a list of keywords and how we extracted keywordsfrom hostnames.

To generate a list of keywords, we performed a pass over all training sessions.

Any token separated by spaces was considered a keyword. As mentioned in Sec-

tion 5.3, we then kept keywords that appeared at least100 times and at most10, 000

times. To determine which keywords occur in a given hostname, we first use the

non-alphanumeric characters in the hostname to break it down into pieces and then
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Figure 5.2: Histogram showing the distribution over the number of possible results
available for an ambiguous query.

match each piece with keywords such that as much of the piece is covered as possi-

ble, using the smallest number of keywords.

To ensure a fair evaluation, the data was split into a training period and

a testing period. The training period was used for training,validation, keyword

generation, andidf (Manning, Raghavan, & Schutze, 2008) calculations (idfs were

used by one of the baselines) and consisted of the first 25 daysof data. The remain-

ing 6 days of data were reserved for testing. Sessions that started in the training

period and ended in the test period were discarded to avoid contaminating the test

data. As validation/testing examples we used sessions thatcontained an ambigu-

ous query from the training/testing periods respectively.To decrease the amount of

random noise in the results, we removed from the test set sessions that contained
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Figure 5.3: Histogram showing the distribution over the number of clicks preceding
an ambiguous query in the test data. The X axis is drawn in log-scale.

no relational evidence, i.e., we removed the sessions that contain no true ground-

ings of thesharesKeyword/Click predicates introduced in Section 5.3. In

this way we obtained11, 234 test sessions, which constitutes72% of the available

test sessions. The distribution over the number of previousclicks in these sessions

is shown in Figure 5.3. As can be seen, the peak is at 3 distinctclicks before the

ambiguous query.

During testing, only the informationprecedingthe ambiguous query in the

active test session is provided as evidence. The set of possible results for this am-

biguous query string is given, and the goal is to rank these results based on how

likely it is that they represent the intent of the user. The user may click more than

one result after searching for a string. This behavior mightbe indicative of at least
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two possible scenarios: either the user is performing an exploratory search and all

clicked results were relevant, or the user was dissatisfied with the results and kept

clicking until finding a useful one. Since the data does not indicate which of these

scenarios was the case, we treated all results clicked by theuser after searching

for the ambiguous query as relevant to his or her intentions.This presents yet an-

other source of noise, and in the future we plan to explore approaches similar to the

implicit feedback techniques described by Radlinski and Joachims (2005) to dis-

entangle these possibilities, although the exact method introduced by these authors

would not be applicable to our data because it requires the availability of anordered

list of the results returned to the user by the search engine.Another possibility is

to use the time spent on a given page as an indicator of its relevance. User studies

(e.g., Fox, Karnawat, Mydland, Dumais, & White, 2005) have confirmed the intu-

ition that pages on which the user spends more time are more relevant to her search.

Our data contains time-stamped records of user activities,so it is possible to obtain

information on the amount of time spent on each clicked page except the last one

within a session. We leave the exploration of this issue to future work.

Learning was performed as described in Section 5.3.2. To evaluate the

learned models, we used Alchemy’s implementation (Kok et al., 2005) of the MC-

SAT algorithm (Poon & Domingos, 2006) for inference. Duringinference, we ran

for 1,000 burn-in steps and 10,000 sampling steps. All otherinference parameters

were kept at their Alchemy defaults.
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5.4.1 Evaluation Metrics

For evaluation purposes, the task of query disambiguation can be viewed as

an information retrieval problem: rank the set of possible results so that the URLs

reflecting the user’s intentions (i.e., actually clicked bythe user) appear as close to

the top as possible. Thus, we used standard information retrieval metrics to evaluate

the performance of our system (Manning et al., 2008) (Chapter 8):

(MAP) Area under the (interpolated) precision-recall curve, which is iden-

tical to the Mean Average Precision metric, commonly used by the IR community.

The MAP score is computed over a set of test instancesT as follows:

MAP(T ) =
1

|T |

∑

t∈T

1

|Rt|

∑

r∈Rt

P@r,

whereRt is the set of possible results for thet-th test instance and P@r is the

precision of the topr results:

P@r =
Num relevant docs among the topr

r
.

(AUC-ROC) Area under the ROC Curve, which can be viewed as repre-

senting the mean average true negative rate. Using the notation from above, this

metric is computed as follows:

AUC-ROC(T ) =
1

|T |

∑

t∈T

1

|Rt|

∑

r∈Rt

TN@r,

where TN@r is the true negative rate of the topr results, defined as

TN@r =
Num irrelevant docs in positions> r

Total num irrelevant docs
.
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Intuitively, the MAP measures how close the relevant URLs are to the top.

One disadvantage of this metric in our case is that it is insensitive to the number of

results to be ranked. For example, ranking a relevant resultin the second position

obtains the same score both when the number of possibilitiesis 2 and when it is

100, even though in the second case the task is clearly more difficult.

Assuming that the user starts scanning the page of returned results from top

to bottom and does not consider any results appearing after the relevant ones, the

AUC-ROC intuitively represents the percentage of irrelevant results that werenot

seen by the user before clicking on a search result. Thus, a random ranker would

obtain an AUC-ROC of0.5. Another useful characteristic of this measure is that

unlike the MAP, it is sensitive to the number of possible results that are to be ranked.

A final issue is how to break ties when a relevant result has thesame score

as some irrelevant results. We report theaverage casein which the relevant result is

placed in the middle position within the group of results with equal scores. For the

most interesting systems, we also report theworst casein which the relevant result

is placed last within the group of results that share scores.This is motivated by

the goal of performing effective personalizationconsistently. The best case is not

interesting because for it perfect performance can be obtained by giving all results

the same score.

5.4.2 Systems Compared

We compared the MLNs from Sect. 5.3 to several baselines:

Random: Ranks the possible results randomly.
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Collaborative-Pearson: Implements a standard collaborative filtering algorithm

(Herlocker et al., 1999) that weights each previous user based on the Pearson corre-

lation between the preferences (i.e. clicks) of that user and the active user. We con-

sidered a clicked result to have rating 1, and an unclicked result that was clicked by

another user for the same query to have rating 0, and all otherresults to be unrated.

Then closest neighbors are chosen (we usedn = 30 following (Herlocker et al.,

1999)), and the prediction that a given result is selected isformed as a weighted

average of the deviations from the mean of each neighbor.

Collaborative-Cosine: Identical toCollaborative-Pearsonexcept that it computes

the similarity between the active user and a previous user asthe cosine similarity

between theidf -weighted vectors of their clicked results.

Popularity : Ranks each result according to the number of previous sessions that

searched for the ambiguous query and chose it.

The goal of query disambiguation is to improve the result ranking over that

obtained by just using the general ranker. Thus, a natural baseline is the general

ranker itself, which in our case is the MSN search engine. Because the position

in the ranked list of each clicked result is available from our data, we could com-

pute MAP and AUC-ROC scores for the MSN search engine based onthese posi-

tions. However, because people have a strong bias towards clicking the top result

on a page (Joachims, Granka, Pan, Hembrooke, & Gay, 2005), such a comparison

would give an unfair advantage to the MSN search engine. Moreover, the set of

results that are displayed and the ranking of those results tend to shift frequently

(Teevan et al., 2008), thus a highly relevant result may not have been clicked sim-
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ply because it did not appear in the list displayed to the user. Finally, such a base-

line does not take into account that there may be at least two results that satisfy an

information need equally well. Thus, a fairer comparison tothe search engine re-

quires actually deploying our proposed systems and testingtheir effectiveness with

real users. Unfortunately, we do not have the resources necessary to launch such a

study.

5.5 Results

Table 5.3 presents the performance when ties among results with the same

score are broken as in the average case. TheCollaborative-Pearsonbaseline per-

forms no better thanRandomon AUC-ROC and only slightly better thanRandom

on MAP. Switching to cosine similarity inCollaborative-Cosinegives modest (but

significant) improvements. ThePopularity baseline is very strong and outperforms

the other baselines, as well asMLN 1 . However, combining popularity with rela-

tional information inMLN 2 leads to significant gains in performance, andMLN 2

achieves a significantly higher AUC-ROC score.MLN 2 , our strongest model,

highlights the main advantage of using MLNs: we were able to significantly im-

proveMLN 1 by incorporating a reliable source of information simply byadding

the popularity formula to the model. Finally, as expected, we observe that adding

local formulae inMLN 3 does not improve performance. This demonstrates that

the interactions of the active user prior to the ambiguous query are not directly

helpful for determining intent and occurs as a result of the brevity of sessions in our

data (cf. Figure 5.3). The inefficacy of local formulae may also be due to the fact
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System MAP AUC-ROC
Random 0.317 0.502
Collaborative-Pearson 0.333 0.502
Collaborative-Cosine 0.360 0.521
Popularity 0.389 0.575
MLN 1 0.375 0.563
MLN 2 0.386 0.587
MLN 3 0.366 0.583

Table 5.3: Results over all test sessions that contain an ambiguous query when ties
in ranking are broken as in the average case. Numbers in bold present significant
improvements over all preceding systems at the 99.996% confidence level accord-
ing to a paired t-test. Additional significant differences are: MLN 1 is a significant
improvement over all baselines exceptPopularity , andMLN 2 improves signifi-
cantly over all preceding systems except forPopularity also in terms of MAP; there
is no significant difference between the MAP scores ofPopularity andMLN 2 ;the
MAP score ofPopularity is significantly higher than that ofMLN 1.

that a session may continue when the user is dissatisfied withthe results obtained

so far. It is interesting to contrast this result with the findings of Dou et al. (2007)

who experimented with much longer sessions (up to 12 days) and reported that the

previous interactions of the active user presented a very strong signal for person-

alization purposes. This emphasizes a fundamental difference in the assumptions

on the data made in this versus previous research: because inour case user-specific

session information is so limited, we cannot rely on only using the past preferences

of the active user and must instead exploit relations to other, historical, users.

Next, we analyze in more detail the performance of the MLN systems to that

of Popularity , which is the strongest baseline. Table 5.4 presents the performance

over all test sessions when ties in ranking are broken as in the worst case. As can be
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System MAP AUC-ROC
Popularity 0.380 0.525
MLN 1 0.373 0.563
MLN 2 0.385 0.586
MLN 3 0.355 0.572

Table 5.4: Results over all test sessions that contain an ambiguous query when ties
in ranking are broken as in theworst case.Numbers in bold present significant im-
provements over all preceding systems at the 99.996% confidence level according
to a paired t-test. Additionally, the MAP score ofPopularity is significantly higher
than that ofMLN 1.

seen,Popularity ’s AUC-ROC score decreases sharply, whereas the MLN models

maintain their performance to almost the same level as in theaverage case. This

behavior is observed partly becausePopularity introduces many more ties among

the scores of possible results than do the MLN models. In particular, averaged over

all test sessions, the ratio between the number of possible results and the number of

distinct scores forPopularity was1.8, whereas forMLN2 it was just1.02. These

results indicate thatPopularity ’s behavior is erratic and can, for the same user and

the same query, lead to rankings that vary highly in quality.This kind of behavior

can give the perception of poor quality to a frequent user. Onthe other hand, the

MLN models are consistent, maintaining the quality of theirrankings in the worst

case.

Finally, we compare the performance ofPopularity to that ofMLN 2 while

varying the degree to which some of the possible results for an ambiguous query

dominate in popularity over the rest. We formalized this as follows. Let qQ be

the empirical distribution over the results clicked for an ambiguous queryQ. This
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distribution was measured empirically on the training data, i.e., for every ambigu-

ous query, we determined from the training sessions the proportion of time each

potential search result was clicked. We then separated the test examples into bins,

such that bini contains all test sessionss for which ⌊KLqQ||uniform⌋ = i, whereQ

is the ambiguous query in sessions andKLqQ||uniform is the KL divergence ofqQ

to the uniform distribution. In other words, bin 0 contains the sessions in which

the possible results for the ambiguous query were all chosenwith roughly the same

frequency. Higher-numbered bins contain sessions in whichone of the search re-

sults strongly dominates in popularity over the other possibilities. When this is the

case, predicting just based on the popularity of a result gives good performance.

The more challenging scenario occurs in the lower-numberedbins where the pref-

erences over possible results are more uniformly distributed. Figures 5.4 and 5.5

comparePopularity to MLN 2 when ties in ranking are broken for the average and

worst cases respectively.MLN 2 maintains a lead overPopularity until the last two

bins in which the distribution over possible results is furthest from uniform. As we

expect, the difference between the performance of the two systems shrinks as we

move to higher-numbered bins, andMLN 2 has a greater advantage overPopular-

ity in the lower-numbered bins in which the need to disambiguateis more pressing.

The sharp drop in accuracy observed in bin 7 is due to the fact that one of the am-

biguous queries occurring in sessions in this bin was overwhelmingly followed by

clicks to what seems to be a newly appearing Web page during the test period. That

page was selected only 3 times in the training period while the most popular page

in the training period was selected more than 2000 times.

130



 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0  1  2  3  4  5  6  7

A
U

C
-R

O
C

 in
 A

ve
ra

ge
 C

as
e 

tie
-b

re
ak

in
g

floor(KL divergence from uniform distribution)

Popularity 
MLN2
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As a final but important note, inference over the learned models was very

efficient and completed in the order of a second.
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Figure 5.5: AUC-ROC when ranking ties are broken so as to simulate theworst
casefor different bins of KL divergence of the distribution overpossible results to
uniform.
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Chapter 6

Future Work

This chapter describes some ways in which the contributionsof this thesis

can be extended. We consider future work relating to transfer learning, structure

learning, and applications to Web disambiguation.

6.1 Transfer Learning

As we discussed in Section 3.1, transfer learning has been applied to a wide

range of problems and settings. The strong interest in this area is motivated not only

by the intellectual appeal of transfer learning as an approach that better emulates the

way humans learn, but also by the fact that transfer learningtechniques have proven

effective in addressing many challenging problems. We envision several ways in

which our contributions to transfer learning can be extended.

6.1.1 Integrating Mapping and Revision

TAMAR views mapping and revision as two separate and independent as-

pects of transfer across multi-relational domains. An interesting extension would

be a system that instead integrates these two processes. Theadvantages of such a

system are that it would provide both a way of gauging the usefulness of source
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knowledge, and a more efficient mapping procedure. Such a system could operate

as follows, supposing that the task is to learn MLN structure.

Acquiring preliminary knowledge: Given a new target domain, learning starts

from scratch, focusing on acquiring what we will callpreliminaryknowledge that

is easier and faster to extract from data than is a full model.Such knowledge could

consist of short clauses that capture dependencies betweenpairs of relations or a

data structure such as the Markov network template from Chapter 4.

Preliminary knowledge guides mapping: Preliminary knowledge can be help-

ful in guiding the mapping process. For example, bothTAMAR and SR2LR con-

sider every possible type-consistent predicate mapping. While this process is ex-

tremely efficient in our domains, it could become prohibitively expensive in do-

mains with a large number of predicates that all take the sametypes of arguments.

Thus, an algorithm that uses the preliminary knowledge to guide predicate map-

ping would be more effective in the latter situations. Such an algorithm can start

by establishing structural correspondences between the source model and the pre-

liminary target knowledge, akin to how it is done in the structure-mapping engine

(Falkenhainer et al., 1989) (described on page 38). If the preliminary knowledge

consists of short clauses, structural correspondences will be established only with

the short clauses in the source model. If instead the preliminary knowledge is rep-

resented as a Markov-network-template-like data structure, structural correspon-

dences will be established between the vliteral dependencies implied by the source

clauses and those captured in that data structure. Because the preliminary knowl-

edge does not represent all aspects of the target model, in a process analogous to
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that in SR2LR, the predicate mappings implied by these correspondences can be

used to transfer additional source clauses that would require more effort to learn

from scratch.

Preliminary knowledge as a relatedness gauge:Preliminary knowledge can also

serve as a basis for relatedness measures that estimate the similarity between two

domains. For example, if large portions of the preliminary knowledge cannot be

mapped to the source model, this can be taken as indication that the source and tar-

get domains are not sufficiently close. Relatedness measures based on preliminary

knowledge can also be used to perform source selection, allowing the transfer sys-

tem to determine autonomously which from a set of source models is closest to the

target domain. In fact, when models from several previouslyencountered domains

are available, the system can perform transfer from multiple sources rather than

limiting itself to a single source. This capability would beespecially useful when

no single previously learned model is a good match for the target domain. In such

cases, a combination of two or more sources, each of which represents a different

aspect of the target domain, could be effective.

Evaluation of Mapped Knowledge and Revision:Rather than evaluating pos-

sible mappings with a probabilistic measure, as done byMTAMAR , better results

could be obtained by using all mappings of the source clausesthat fit the structural

correspondences with the preliminary knowledge, attempting to revise them, and

dropping them only if they are ineffective even after the revision. This is moti-

vated by the observation in Figure 3.10 thatSR2LR can outperformMTAMAR even

when knowledge about the domain grows. The revised structure can then be used
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to find better mappings of the source clauses, which could allow more of the source

clauses to be transferred, thus alternating between mapping and revising the source

knowledge.

6.1.2 Bottom-Up Revision

A second direction in which our work on transfer and structure learning can

be extended is by developing a bottom-up learner, such asBUSL, that can be used

not only for learning from scratch but also for revision of existing knowledge. Such

a revision algorithm can be used to revise both transferred and human-provided

knowledge. In preliminary experiments with such algorithms, we found that, given

complete domain knowledge of at least one mega-example,BUSL obtained better

predictive accuracy when learning from scratch than it did when revising transferred

knowledge. However, we expect that if target-domain data isincomplete, revision

algorithms that, likeSR2LR, are aware of the missing data would lead to more accu-

rate models. Such algorithms could operate analogously toSR2LR by revising only

those aspects of existing knowledge that can be reliably evaluated on the available

data and using insights from these revisions to also correctthe remaining aspects.

A related problem is the need for systematic studies of how varying the

number of unknown facts in a domain affects the relative performance of systems

that learn from scratch or use transfer learning. Typically, in SRL applications one

makes the closed-world assumption (CWA) as a convenient wayof storing the data.

Under the CWA only the true facts need to be stated, and any fact that is left out

is assumed to be false. In Section 3.3, we considered one way in which the CWA
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can be modified by restricting it so that it applies to a singleentity. An interesting

future question is to study other ways in which the CWA can be qualified.

6.2 Structure Learning

We can view MLN structure as serving two distinct purposes. On the one

hand, the logical formulae capture dependencies and regularities among the rela-

tions, such as that if someone teaches courses, then she alsoadvises students. On

the other hand, clauses can also serve as relational features that describe complex

relational characteristics of the entities in the data. This happens frequently in

molecular biology domains where the clauses are used to describe aspects of the

chemical structure of the molecules, such as benzene rings.The TNode construc-

tion procedure ofBUSL, described in Section 4.2.1 discovers relational features,

whereas the Markov network template construction from Section 4.2.2 finds depen-

dencies among these features. However, at present TNode construction is limited to

finding relational features consisting of at most two literals. Although in principle

the procedure could discover longer TNodes, the size of the search space explodes

quickly as the TNode length grows. In many cases, it may be necessary to dis-

cover longer features; e.g., to describe a benzene ring, oneneeds to capture the

relations among six carbon-hydrogen pairs. TheLHL algorithm, recently developed

by Kok and Domingos (2009), comes with an efficient procedurefor discovering

longer relational features. Thus, in the future, it would beinteresting to explore

ways in whichLHL ’s approach can be used byBUSL to discover more descriptive

TNodes, that could then be related to each other in the Markovnetwork template
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construction step. This would allow for the efficient discovery of dependencies

among complex relational characteristics.

6.3 Web Query Disambiguation

Our work on exploiting relational information to compensate for insuffi-

cient entity-specific data in Web query disambiguation motivates several avenues

for future research.

Better disambiguation accuracy can be obtained by incorporating more evi-

dence into our models. For example, our current approach relates the active session

only to sessions that also searched for that ambiguous query. In addition, we en-

vision including relations to sessions that did not search for that exact query but

clicked on a possible result for it. Additional informationcan also be provided by

bringing in outside sources, such as the actual content of possible results, or topic

categories in which they participate.

One prerequisite to efficient modeling with such diverse sources of infor-

mation is the ability to retrieve knowledge relevant to a newuser efficiently. For

example, one of the formulae we used in Chapter 5 was:

Result(R) ∧ SharesClick(S, D) ∧ ChoseResult(S, R) ∧ ClickOn(R)

TheSharesClick andChoseResult predicates in this formula refer only to ses-

sions that contain a search for the ambiguous query from the current session. This is

a much smaller set than the set of all sessions that contain atleast one click to a pos-

sible result for the ambiguous query. Thus, while in our existing model efficiency
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is guaranteed by the size of the population with which relations are established, if

we increase this population in order to obtain richer evidence, efficient retrieval of

relevant sessions becomes extremely important. Some work in this direction has al-

ready been done in the recentFROGsystem (Shavlik & Natarajan, 2009) and in the

implementation of clause grounding in Alchemy (Kok et al., 2005). However, we

believe that more efficient indexing schemes, closely coupled with SQL databases

in which such data can be conveniently stored, would lead to dramatic improve-

ments in efficiency.

A second direction of future work motivated by Web query disambiguation

is learning of more nuanced models. Currently, our system learns a single weight

for each formula. However, some shared domains (represented by theD variable

in the formula above) are better predictors of relatedness than others. For instance,

we expect that a shared click toyahoo.com is less indicative of relatedness than

is a shared click toijcai.org . In preliminary experiments, we attempted to

learn a separate weight for each possible relating domain ineach formula but found

that the available training data was too sparse to support such an approach. A

better technique would be to first cluster the domains according to their ability to

relate sessions and learn a separate weight for each rule andeach cluster. Ap-

proaches that cluster entities in multi-relational data have already been developed

(e.g., Kok & Domingos, 2007, 2009). In this case, however, weexpect that simpler

techniques that can handle training data coming in as a stream rather than in a batch

would work better because of the large size of the data.

Finally, at present our evaluation procedure is limited by the fact that our
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data does not list all results presented to a user but just theclicked ones. We would

like to explore ways in which this process can be made less noisy, such as, for ex-

ample, by taking into consideration the amount of time spenton a clicked result. It

would also be interesting to test our system in action, i.e.,as part of an experimental

search engine on new ambiguous queries.

6.4 Other SRL Models

Because of the generality of MLNs, many of the ideas we have presented

in this thesis can be applied to other SRL models. In Section 3.3.1, we already

discussed other models that could be used to perform transfer learning withSR2LR.

Similarly, the main idea used inBUSL can be employed to train other SRL mod-

els, in particular Bayesian logic programs (BLPs) (Kersting & De Raedt, 2001). A

BLP defines a Bayesian network via a set of Horn clauses, each of which specifies

a dependence of the head on the antecedents. This is analogous to MLNs in which

first-order formulae define dependencies among their literals. Thus, BLP structure

could be learned using aBUSL-like algorithm, that first discovers sets of interde-

pendent variables, as in the Markov network template from Chapter 4, and then

searches for Horn clauses that comply with these dependencies.
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Chapter 7

Conclusions

The research presented in this thesis addresses several aspects of learn-

ing with Markov logic networks (MLNs). We have motivated andfollowed two

main themes: the effectiveness of bottom-up learning techniques that use the avail-

able data not only to evaluate hypotheses but also to proposethem; and the need

for methods that allow for effective modeling from limited data. Adopting these

themes, we have addressed the problems of structure learning from scratch, transfer

learning, and Web query disambiguation.

We first focused on the problem of transfer learning across relational do-

mains, addressing two different settings. In the first setting, a sufficient amount of

target-domain data is available, and the goal is to revise a transferred structure so

that it obtains better predictive accuracy in the target domain. We developed an

algorithm that first diagnoses the source structure in orderto determine which parts

of it do not fit the target task. This diagnostic analysis thenallows revision to fo-

cus only on the incorrect portions of the structure, thus speeding up learning in the

target task. To find dependencies that are new to the target domain, our algorithm

incorporates ideas from inductive logic programming and implements relational

pathfinding, an effective procedure based on finding paths inthe relational graph of
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the data.

In the second transfer learning setting we considered, target-domain data is

severely limited, consisting of information about a handful of entities, in the ex-

treme case just one. When such a limitation is placed on data,effective learning

from scratch is infeasible and transfer learning is a natural approach. We developed

a simple but effective technique that maps source knowledgeto the target domain

by testing out potential predicate mappings on short-rangeclauses whose correct-

ness can be directly evaluated on the available data. Successful mappings are then

used to map the remaining clauses. We demonstrated that in this way reasonable

accuracy can be attained from very limited data, and that this approach is superior

to several baselines, as well as to a technique that is not explicitly addressing the

missing data aspect.

A second problem we addressed in this thesis is structure learning from

scratch. This problem is important not only as a way to obtainsource models for

transfer but also for modeling in stand-alone tasks. We developed a bottom-up

structure learner that starts by discovering a Markov network template, a novel

data structure that encodes the dependencies among unground literals. The Markov

network template then guides the search for clauses. In thisway, our algorithm

can avoid some of the pitfalls of top-down approaches, such as local maxima and

plateaus.

In the final part of the thesis, we focused on a specific problem, that of Web

query disambiguation, to demonstrate how by exploiting relations between entities,

we can compensate for a constraint on the amount of entity-specific information
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that is available. We defined several ways of relating the sessions of search engine

users and defined the structure of an MLN based on these relations. Weights for

this structure were then learned from the data. We demonstrated that our approach

outperforms several natural, and in some cases, strong baselines.

Overall, the contributions in this thesis have led to progress on structure

learning, a core aspect of successful modeling in multi-relational domains, as well

as to progress on a practically significant application of SRL to Web query disam-

biguation. We hope that our work will lead to wider use of bottom-up learning in

the SRL community and to the introduction of SRL techniques to enable advances

in new problems, such as ones in Web personalization, that have traditionally been

viewed as feature-vector tasks.
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Appendix 1

Complete Learning Curves ofTAMAR

Figures 1.1 to 1.5 present complete learning curves for the results presented

in Section 3.2.2. The zeroth points are obtained by testing the performance of the

MLN provided to the learner at the start.

145



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 4 3 2 1 0

A
U

C

Number of Mega Examples

Learning Curves in IMDB Domain (Transfer from WebKB)

ScrKD
TrKD, Automatic Mapping

TAMAR, Automatic Mapping

a)

-10

-8

-6

-4

-2

 0

 2

 4

 4 3 2 1 0

C
LL

Number of Mega Examples

Learning Curves in IMDB Domain (Transfer from WebKB)

ScrKD
TrKD, Automatic Mapping

TAMAR, Automatic Mapping

b)

Figure 1.1: Learning curves in WebKB→ IMDB for a) AUC and b) CLL.

146



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 4 3 2 1 0

A
U

C

Number of Mega Examples

Learning Curves in IMDB Domain (Transfer from UW-CSE)

ScrKD
TrKD, Hand Mapping

TAMAR, Hand Mapping 
TrKD, Automatic Mapping

TAMAR, Automatic Mapping

a)

-10

-8

-6

-4

-2

 0

 2

 4

 4 3 2 1 0

C
LL

Number of Mega Examples

Learning Curves in IMDB Domain (Transfer from UW-CSE)

ScrKD
TrKD, Hand Mapping

TAMAR, Hand Mapping 
TrKD, Automatic Mapping

TAMAR, Automatic Mapping

b)
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