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Traditionally, machine learning algorithms assume ttraihtng data is pro-
vided as a set of independent instances, each of which caesgeiloked as a feature
vector. In contrast, many domains of interest are inheyemtllti-relational, con-
sisting of entities connected by a rich set of relations.éx@mple, the participants
in a social network are linked by friendships, collabomasipand shared interests.
Likewise, the users of a search engine are related by seaf@hgimilar items and
clicks to shared sites. The ability to model and reason abocit relations is es-
sential not only because better predictive accuracy iseaeli by exploiting this
additional information, but also because frequently thal g®to predict whether
a set of entities are related in a particular way. This th&sgis within the area
of Statistical Relational Learning (SRL), which combinégas from two tradi-
tions within artificial intelligence, first-order logic amaobabilistic graphical mod-

els, to address the challenge of learning from multi-refal data. We build on



one particular SRL model, Markov logic networks (MLNSs), weiiconsist of a set
of weighted first-order-logic formulae and provide a prpied way of defining a
probability distribution over possible worlds. We deveddgorithms for learning of
MLN structure both from scratch and by transferring a preslg learned model,
as well as an application of MLNs to the problem of Web quesadibiguation.
The ideas we present are unified by two main themes: the nebstovith limited

training data and the use of bottom-up learning techniques.

Structure learning, the task of automatically acquiringetcd dependen-
cies among the relations in the domain, is a central probie8RL. We introduce
BUSL, an algorithm for learning MLN structure from scratch thadqeeds in a more
bottom-up fashion, breaking away from the tradition of tigwn learning typical
in SRL. Our approach first constructs a novel data structallecc aMarkov net-
work templatehat is used to restrict the search space for clauses. Oariggnts
in three relational domains demonstrate thasL dramatically reduces the search
space for clauses and attains a significantly higher acgtihan a structure learner

that follows a top-down approach.

Accurate and efficient structure learning can also be aeldidy transfer-
ring a model obtained in aourcedomain related to the curretdargetdomain of
interest. We view transfer as a revision task and preserganthm that diagnoses
a source MLN to determine which of its parts transfer digettilthe target domain
and which need to be updated. This analysis focuses thehstarcevisions on
the incorrect portions of the source structure, thus speedp learning. Transfer

learning is particularly important when target-domairedatlimited, such as when



data on only a few individuals is available from domains witindreds of entities
connected by a variety of relations. We also address thikectging case and de-
velop a general transfer learning approach that makestie#fagse of such limited

target data in several social network domains.

Finally, we develop an application of MLNs to the problem oéMfuery
disambiguation in a more privacy-aware setting where thg ioformation avail-
able about a user is that captured in a short search sessteib qfrevious queries
on average. This setting contrasts with previous work taically assumes the
availability of long user-specific search histories. To pemsate for the scarcity of
user-specific information, our approach exploits the refest between users, search
terms, and URLs. We demonstrate the effectiveness of ouoapp in the presence
of noise and show that it outperforms several natural haselon a large data set

collected from the MSN search engine.
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Chapter 1

Introduction

The goal of machine learning is to develop algorithms thataaintelligent
systems to acquire knowledge and improve their performantematically from
experience. The typical assumption made by most machineifggalgorithms is
that training data is provided as a set of instances, whefeiaatance is described
as a feature vector, from which the value of a target featute be predicted. For
example, in a system for evaluating credit card applicatieach training instance
is a credit card applicant, who is described by a vector diifea, such as income,
birth date, profession, and address, and the goal is toginetiether or not the ap-
plicant is creditworthy. The crucial assumption made byhsieature-vector clas-
sification algorithms is that the instances sr@ependenof each other. Therefore,
such algorithms view the data as being represented by aedlgle that contains a
row for each instance and a column for each feature, suchriti&idual rows are

independent.

In contrast, many domains of interest are inherently nrel&tional, con-
sisting of entities connected by a rich set of relations.dxample, the participants
in a social network are linked by friendships, collabonasipand shared interests.

Likewise, the users of a search engine are related by seaf@hgimilar items and



clicks to shared sites, which are themselves related bydtapics, keywords, or
by linking to one another. The ability to model and reasonualsach relations is
essential not only because better predictive accuracyhiewed by exploiting this
additional information, but also because frequently thal goto predictwhether a
set of entities are related in a particular way. For exammiedlicting the “friend-
ship” relation allows social networking sites to suggest meends to their users,
whereas by predicting the “interested in” relation, a Se&mgine can customize its
results for each user. Algorithms that assume a featurewespresentation can-
not be employed for such tasks, in which the data can be viagasbnsisting of
multiple tables that describe the properties and relatidrise same set of entities.
For example, in a social networking domain, one table mayainihe birth dates,
addresses, and other personal information of users; antzthke may represent
friendship relationships by listing pairs of friends; anthad table may represent

group memberships by listing person-group pairs.

Statistical relational learning (SRL) (Getoor & TaskarQZ) a subfield of
machine learning, has made great progress in addressinfpdfienge of learning
from suchmulti-relationaldata by combining ideas from two traditions within arti-
ficial intelligence. On the one hand, unlike learning methtbtat use feature-vector
representations, SRL uses the expressiveness of strd¢amguages, such as first-
order logic or SQL, to represent tegucture which captures the dependencies and
regularities among the relations in a domain. On the othed h&RL borrows ideas
from graphical models, such as Bayesian or Markov netwadkenpose a proba-

bilistic interpretation over the structure, thus enabl8BRL to deal with the noise



and uncertainty frequently present in relational domains.

The work in this thesis builds on one particular SRL moded, karkov
logic network (MLN) (Richardson & Domingos, 2006). In an MLNependen-
cies among the relations are expressed in first-order lag&cset of possibly con-
tradictory formulae, and the weight attached to each foanudtermines its rela-
tive importance in the overall model. Intuitively, eachrfarla in an MLN rep-
resents a “rule of thumb” that guides prediction but doeshase to be always
true. There are several advantages to using MLNs that hatigatexl our choice
of model. First, MLNs are a very expressive and general sgmtation. They are
capable of representing all possible probability distidms over a finite number
of objects [(Richardson & Domingos, 2006) and subsume all 8lesentations
that can be formed as special cases of first-order logic dvgtitistic graphical
models [(Richardson, 2004). This set includes several wideéd models, such
as probabilistic relational models (Getoor, Friedman léok Pfeffer, 2001) and
relational Markov networks (Taskar, Abbeel, & Koller, 200As a result of this
generality, many of the techniques we present are direpghjiaable to other SRL
models. Second, the use of first-order logic to express MLlNcgire is bene-
ficial because, on the one hand, it allows MLN structure legrnechniques to
draw inspiration from the rich, decades-long tradition oductive logic program-
ming (DzZeroski & Lavrac, 2001); on the other hand, firsi@rlogic provides an
intuitive language in which available background knowledgn be conveniently
encoded by human engineers. Third, MLNs come with a wellnta&ned code

basel(Kok, Singla, Richardson, & Domingos, 2005), whoséahisty has allowed



us to focus on the novel contributions of this thesis, withtwaving to develop a

dedicated framework from scratch.

1.1 Main Themes

The ideas presented in this thesis are unified by two mainriymagthemes:

1.1.1 Dealing with Limited Training Data

Limited data is a common impediment to successful modehngachine
learning. In this thesis, we have explored two approachesd¢ocoming this chal-
lenge. First, we introduce techniques for transfer acrogkidrelational domains
that enable more accurate learning from limited data. Insfier learning, a model
acquired in a source domain is used to aid learning in a talgetain that is dis-
tinct from the source but related to it. The use of transfarrang techniques may
be beneficial in three ways: by giving an initial boost to tkarher before any
data is observed, by attaining superior performance fras data, and by obtain-
ing more accurate models at the end of learning. Transfemilggin SRL can be
viewed as a way of breaking the independent and identicadlyilouted (i. i. d.)
assumption commonly made in feature-vector learning. fidependence aspect
is violated by the fact that in SRL entities can engage intiata; the identically
distributed aspect is broken by transfer, which enable®mileg from training data

that follows a different distribution from that of the test.

Second, by focusing on one particular problem, Web quegndisguation,

we explore ways in which knowledge about the relations betwentities can be
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Figure 1.1: Two scenarios of limited data considered in thesis. Each node
represents an entity. The shapes inside a node represésutiises, whereas the
edges represent relations. In (a), full knowledge aboutglsinode is provided. In
(b), there is limited knowledge about the node attributes.

used to compensate for the scarcity of entity-specific feahformation. The goal
in Web query disambiguation is to determine the intentidrassearcher who enters
a potentially ambiguous query. By exploiting the relatibmetween users, we de-
velop an approach which does not depend on extensive useifis@nd potentially
sensitive personal information. Figurell.1 illustrates sgenarios of limited data

considered in this thesis.

1.1.2 Bottom-Up Learning

Traditionally, learning algorithms in SRL have followetbgp-downparadigm
common in probabilistic graphical model learning where @egy search through
the hypothesis space is conducted by systematically gemgia@large number of

candidates at each iteration, scoring them according tolzghilistic measure, and



keeping the most promising ones, from which new candidategenerated at the
next iteration (e.g., Heckerman, 1995). In contrast, tlebriegues introduced in
this thesis follow aottom-upphilosophy, and take a more data-driven approach,
whereby a close analysis of the available data motivatesadlesnmumber of more
promising candidate hypotheses. Because of this, botiptechniques are usu-
ally faster to train. Bottom-up learning is also motivatgdtbe observation that it
frequently leads to more accurate models because the geideom the data pre-
vents learning from being trapped in local maxima. We haydard two aspects
of this theme: in MLN structure learning from scratch, whete approach first
summarizes useful features in a novel data structure teatghides the search for
structures; and in transfer of MLN structure, where the datased to diagnose
a source model, thus narrowing down the search for cormextid he difference

between the top-down and bottom-up paradigms is illusdraté&igure[1.2.

1.2 Thesis Contributions

The goal of this thesis is to address several aspects ofitganith MLNSs:
structure learning, transfer learning, and an applicaioweb query disambigua-

tion, as we describe next in more detail.

1.2.1 Structure Learning

A central problem in SRL istructure learningthe task of automatically
acquiring a set of dependencies among the relations in timaitho We introduce a

novel approach for learning MLN structure from scratchedBusL for Bottom-
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Figure 1.2: An illustration of top-down versus bottom-upri@ng. In top-down

learning, a large number of candidate hypotheses (the grelgs) are generated,
and the data is used only to evaluate these candidates. tbmbap learning, the
data is used also to drive the generation of hypothesesessilt,ra smaller number
of the more promising candidates is generated.

Up Structure Learning. Our approach breaks away from thedtopn paradigm
and instead proceeds in a more bottom-up fashion by firstticanimg aMarkov
network templatea variablized Markov network, whose nodes consist of chafn
one or more literals and serve as clause building blocks Médm&ov network tem-
plate is used to restrict the search space for clauses byriregjthat all literals in a
clause be part of a clique in the template. This restrictlamotivated by the obser-
vation that the clauses in an MLN define functions over thgues of the Markov
network that is obtained by grounding the MLN for a particWamain. Our exper-
iments in three real relational domains demonstrate thegfhproach dramatically

reduces the search space for clauses and attains a sigihyflugiher accuracy than

a structure learner that follows a top-down approach (Kok@&ingos, 2005).




1.2.2 Transfer Learning

Accurate and efficient structure learning can also be aeldidy transfer-
ring a source model obtained irsaurcedomain related to the curretargetdomain
of interest. For example, because human interactions tebd similar across con-
texts, a model learned in a domain on social interactionsemtovie business is
likely to be effective in a domain about social interactiomacademia. We view
transfer as a revision task and present an algorithm thghdses a source MLN to
determine which of its parts transfer directly to the tagm@nain and which need to
be updated. This analysis focuses the search for revisiotiseancorrect portions
of the source structure, thus speeding up learning. We aswdstrate that when
this revision technique is incorporated in an integratathgfer system that first
maps the source knowledge to the target domain and theresavjsmprovements

in the accuracy of learning over learning from scratch can bk obtained.

Transfer learning is particularly important when targetrdin data is lim-
ited, such as when data on only a few individuals is availéfolen domains with
hundreds of entities connected by a variety of relations. adéiress this case, in
which learning from scratch is infeasible, and devet®2LR, a general transfer
learning approach that makes effective use of such limieget data in several

social network domains.

1.2.3 Web Query Disambiguation

We develop an application of MLNs to the problem of Web queasanmh-

biguation in a more privacy-aware setting where the onlpnmfation available



about a user is that captured in a short search session of pitevidus queries
on average. This setting contrasts with previous work taically assumes the
availability of long user-specific search histories, andfisignificant practical im-
portance for users who want a personalized experience éutaty of having long
histories of their searches be recorded by the search entprsompensate for the
scarcity of user-specific information, our approach explthe relations between
users, search terms, and URLSs, and uses a hand-codedstrooter which weights
are learned in an online fashion. We demonstrate the aefeaetss of our approach
in the presence of noise and show that it outperforms sematatal baselines on a

large data set collected from the MSN search engine.

1.3 Thesis Roadmap

In the next chapter, we start with a discussion of the baakgian which
the contributions of this thesis build. Chagter 3 discussesvork in transfer learn-
ing by describing two algorithmsRTAMAR andSR2LR. Chaptef 4 describes our
algorithm for learning the structure of MLNs from scratchaitbottom-up way. In
Chaptef b, we develop an approach to the problem of Web gusaynthiguation
and demonstrate how relational information can be expldibecompensate for a
limitation on the amount of user-specific data. Chapter 6riless future directions,

and Chapter]7 concludes.



Chapter 2

Background

The work in this thesis is in the area of Statistical Relaidrearning (SRL)
(Getoor & Taskar, 2007), which builds upon two major tramhs within artificial
intelligence—Ilogical models, and probabilistic graphicedels. In this chapter
we give a brief overview of the necessary background in theeseareas and then
describe in detail Markov logic networks (Richardson & Dagos| 2006), the spe-
cific SRL model upon which we build. Later chapters will irduee related work

specific to their content.

2.1 First-Order Logic

First-order logic provides an expressive language for rilgisg the fea-
tures and relations that hold in an environment. It distiskyes among four types of
symbols—constants, variables, predicates, and func{iRussell & Norvig, 2003).
Constants describe the objects in a domain and can have fypesexample, a do-
main may contain the constarjeck andjill of type person andnale and
female of type gender. Variables act as placeholders to allow fangtication.
Predicates represent relations in the domain, sudN@kedFor . Function sym-

bols represent functions over tuples of objects. The afitypredicate or a function

10



is defined as the number of arguments it takes. These argsiremilso be typed,
thus restricting the type of constant that can be used. Wedeiiote constants
by strings starting with lower-case letters (ijgl ), variables by single upper-
case letters (i.e A, B), and predicates by strings startiitig wpper-case letters (i.e.
WorkedFor ). Sets of variables will be denoted with bold upper-caseeist(i.e.
A, B).

Example 2.1.1.As a running example, we will use the following simplified si®n

of one of our test domains. The domain contains facts abalwiguals in the
movie business, describing their professidwtor(A)  or Director(A) ), their
relationships, and the movies on which they have worked. WoekedFor(A,

B) predicate specifies that persdnworked on a movie under the supervision of
director B, whereas theCredits(T, A) predicate specifies that individudl
appeared in the credits of movie. Here A, B, andT are variables. Actor

and Director  each have one argument of type pers@vorkedFor has two
arguments of type person; a@iedits has two arguments where the first one
is of type movieTitle and the second one is of type person. édample domain
has the constantsando andcoppola of type person, andodFather of type

movieTitle.

A term is a constant, a variable, or a function that is apptederms.
Ground terms contain no variables. An atom is a predicatdegb terms. A
positive literal is an atom, and a negative literal is a nedatom. We will use the

term gliteral to refer to a ground literal, i.e. one containing only congtaand

11



vliteral to refer to a literal that contains only variables. A clausa disjunction of
positive and negative literals. Ground clauses contain gliterals. The length of a
clause is the number of literals in the disjunction. A deéirttause is a clause with
exactly one positive literal, called the head, whereas #gative literals compose
the body. A Horn clause is a clause with at most one positigeali. A world is an
assignment of truth values to all possible gliterals in a diomif the closed-world
assumption is made, only the true gliterals need to be listeder this assumption
all unlisted gliterals are assumed to be false. For the meseaiof this document,

we will make the closed-world assumption, unless othergjmeified.

Example 2.1.2.For exampleWorkedFor(A, B) isavliteral, whileworkedFor
(brando, coppola) is a gliteral. The following clause is definite because it

contains exactly one positive literal:

Credits(T,B)v— Credits(T,A)V— WorkedFor(A, B).

Using the fact thagVv—p is logically equivalent tp = ¢, we can rewrite this

clause in a more human-readable way, without modifying #suning, as follows:

Credits(T, A)A WorkedFor(A, B)=- Credits(T,B).

Note that every definite clause of length at least 2 can bdttewias a con-
junction of positive literals that serve as the premises ftbdy) and a conclusion

consisting of a single positive literal (the head).

One possible grounding of the above clause is:

12



Credits(godFather, brando)WorkedFor(brando, coppola}
Credits(godFather,coppola).

In fact, we can rewrite any clause as an implication. Comsfdeexample,
the following clause, which is neither Horn, nor definite dese it contains more

than one positive literal:

Actor(A) V- Credits(T, A)V Director(A)

This clause can be rewritten as an implication in severalswdgpending

on what literal we would like to serve as the conclusion:

—Actor(A) A Credits(T, A)=- Director(A)

Credits(T, A)A— Director(A) = Actor(A)

— Actor(A) A— Director(A) = — Credits(T, A)

We will call the literals to the left of the implicatiopremisesor antecedents
The literal on the right of the implication will be called tlwnclusion These

implication rewrites will be helpful in Sectidn 3.2.

2.2 Inductive Logic Programming

Inductive logic programming (ILP) is an area within machiearning that

studies algorithms for learning sets of first-order claysasrac & DZeroski, 1994).

13



Usually, the task is to learn rules for a particular targetiicate, such as/orkedFor
given background knowledge. This background knowledge cmegist either of
general clauses, or, more commonly, of a list of the trueegls of all predicates
in the domain except the target predicate. The negative asitiye examples are
provided by the true and false gliterals of the target praéidi.e. in our case
WorkedFor ). The form learned rules can take is frequently restricieddmand-
ing that they be definite clauses (elg., Richards & Moone95),9r by allowing
the user to impose some other declarative bias (e.g., DetRa@dhaspe, 1997).
By performing techniques such as resolution on the learfates, new examples

can be classified as positive or negative.

2.2.1 Top-Down ILP

Top-down ILP algorithms (e.d., Quinlan, 1990; De Raedt & e, 1997)
search the hypothesis space by considering, at eachateratl valid refinements
to a current set of candidate hypotheses. These candidattgea evaluated based
on how well they cover positive examples and exclude negsitia set of well-
performing ones is greedily selected, and the processraggiwith the next iter-
ation. In addition to classification accuracy, several otteristics for scoring, or
evaluating, candidates have been used. For example,dses an information the-
oretic measure of the information gained by adding a litevya candidate clause
(Quinlan, 1990). CAUDIEN uses a measure that takes into account the length of
the clause (De Raedt & Dehaspe, 1997). In summary, top-doRechniques use

the data only to evaluate candidate hypotheses but not gestigrays for forming
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new candidates.

2.2.2 Bottom-Up ILP

Bottom-up ILP algorithms start with the most specific hysis and pro-
ceed to generalize it until no further generalizations aresgble without covering
some negative examples (Lavrac & DZeroski, 1994). Fomgle, the initial hy-
pothesis may be a set of rules where each rule’s premiseggoly & conjunction
of the true gliterals in the background knowledge, and thcksion is one of the
positive examples. One way of generalizing this initial getlauses is via the
technique oleast general generalizatiof GG) (Plotkin, 1970), which can be in-
tuitively understood as the most cautious, or conservageeeralization. The tech-
nique of LGG is appealing also because it provides a priadiplay of dealing with
functions. One popular ILP system that uses LGG @ EM (Muggleton & Feng,
1992). LGG has also been used by Thomas (2003) to developanthm that

extracts information from hypertext documents.

An alternative method for bottom-up ILP is known as inverssotution
(LavracC & Dzeroski| 1994), in which the basic idea is tartsteom a positive ex-
ample in the data and attempt to construct rules from whiehettample can be
derived using resolution. ThedGAN-H algorithm (Arias, Khardon, & Maloberti,
2007) generates clause candidates in a similar way, budrrdthn proposing new
clauses based on the positive examples, it uses the negasingles. Given a neg-
ative example, it generates the set of all Horn clauses, thatithe antecedents

consist of all true statements in the example, and the ceiarius a fact that isot
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true in the given example. @GAN-H then uses a novel generalization procedure
that modifies not just the antecedents of a Horn clause, batthé set of possible
conclusions. Positive examples are used only for removiagses with incorrect

conclusions.

In summary, bottom-up ILP algorithms take stronger guigafiom the
data, which is also used foroposeclause candidates. This is in contrast with

top-down algorithms, which use the data only to evaluatelickate clauses.

2.2.3 Hybrid Approaches

Hybrid approaches, (e.d., Zelle, Mooney, & Konvisser, 1984iggleton,
1995), aim to exploit the strengths of top-down and bottgrtechniques while
avoiding their weaknesses. Because bottom-up techniceresrgize from single
examples, they are very sensitive to outliers and noiseertréining data; how-
ever, because many bottom-up techniques employ LGGs, thdyedter-suited for
handling functions. Similarly, top-down techniques cattdranake use of general
background knowledge to evaluate their hypotheses, bgréexly search through

the hypothesis space can lead to long training times.

For example, Zelle et al. (1994) present an approachICN, that suc-
cessfully improves accuracy over both a purely top-downapdrely bottom-up
learner by combining ideas from these two paradigmsaLON uses LGGs to form
initial clauses and refines them further by searching fortamtal antecedents in a
top-down way, as well as inventing new predicates that acessary in order to

express the target concept concisely.
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Relational pathfinding (RPF), developed by Richards andidgd1992),
is another hybrid approach to clausal discovery. RPF vibag¢lational domain
as a hypergrapty in which the constants are the vertices and a set of consiemnts
connected by a hyperedge if they appear together in a trtezalli Intuitively, RPF
forms definite clauses in which the head is a particular tiitergl of the target
predicate, and the body consists of gliterals that definghaipahe relational graph
G between the constants in that gliteral. These clauses eneviriablized. More
specifically, RPF searchés for an alternate path of length at least 2 between a
set of constant$c,, . .., ¢, } connected by a hyperedge, wherés the arity of the
target predicate. If such a path is found, it is transfornmd & clause as follows.
First, anegativeliteral is created for each predicate that labels a hyper@dghe
path and is grounded with the constants connected by thisregige. In addition, a
positiveliteral is constructed in this way for the hyperedge coningctc, . . ., ¢, }.
The resulting clause is a disjunction of these literals witimstants replaced by
variables. This is the bottom-up part of the process. Hitibing search, which
proceeds in a top-down fashion, is used to further improeecthuses by possibly

adding unary predicates.

Example 2.2.1.Suppose Figure 2.1 lists all true facts in the domain. Fi§uge
shows the relational graph for this domain, in which all pcates are of arity at
most two. The highlighted edges form an alternative patiwéebbrando and

coppola , from which we construct the clause:

WorkedFor(brando,coppola)—-Credits(godFather,brand®)-Credits(godFather,coppola).
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Director(coppola) Actor(brando)
Credits(godFather, brando) Credits(godFather, coppola)
Credits(rainMaker, coppola) WorkedFor(brando, coppola)

Figure 2.1: Example relational database

WorkedFor
brando coppola
O\ S
2 &
godFather

Figure 2.2: Example of a relational graph

After variablizing, this clause becomes:

WorkedFor(A,B)v—Credits(T,A)v—-Credits(T,B).

This can be rewritten as

Credits(T,A)A Credits(T,B)=- WorkedFor(A,B).

Hill-climbing search might lead to the addition Attor(A) and

Director(B) to the conjunction in the antecedents.

2.2.4 Revision of Logic Programs

The ILP algorithms discussed so far all learn from scratcbm@&imes,

however, an initial, somewhat incorrect, first-order lotjieory is provided, along
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with training data, and the task is to revise the theory so ithéits the train-
ing data by modifying it as little as possible. This is the lgeon addressed by
Richards and Mooney (1995). The resulting systelmrTE, can be viewed as a
hybrid revision algorithm. BRTE is a top-down learner in that it uses hill-climbing
search to improve the provided theory. However, rather gttempting all possi-
ble refinements to the provided clausesRFE starts in a bottom-up fashion and
focuses its search by first diagnosing the possible soufaasars in the provided
theory. It does this by attempting to prove positive examjgled observing where
the clauses fail. These points of failure are marked asiogvigoints and are the

only places in the original theory where attempts for imements are made.

More recently, Goldsmith and Sloan (2005) present reviaigorithms for
restricted classes of Horn clauses. They give an algorithmthie case of depth-
one acyclic Horn clauses in which variables that occur asad Irea clause do not
appear in the body of any other clause. A second algorithris détn the restricted
case of Horn clauses with unique heads. The introductiohedd subclasses of
Horn clauses, allows the authors to give theoretical guaesnof the efficiency of

their algorithms.

As we will discuss in Sectioh_3.1.4, revision algorithms ¢amnused for
transfer learning where the initial first-order logic thgds learned in a previous

domain, rather than being provided by a human.

All the approaches discussed in Section 2.2 result in thetoaction of
first-order theories. Even though this representationgslifiexpressive, it is not

well-suited to modeling in uncertain domains and cannovipl®estimates of the
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probability that a certain fact is true. Next, we turn to aemvew of probabilistic

graphical models, which provide an important step towarddeting uncertainty.

2.3 Probabilistic Graphical Models

Probabilistic graphical models provide a compact way ofesenting a
joint probability distribution over sets of variables. Assing that each variable
can take on at mostvalues, any joint probability distribution can be expresbeg
listing the probability for every possible combination afsggnments of values to
the variables. If the total number of variablesiighis would require one to specify
v™ parameters. Probabilistic graphical models take advantdghe observation
that frequently a given variable is directly dependent oly amsmall subset of the
variables, and this subset renders it conditionally indepeat of the rest. Thus,
in a complete listing of probabilities for all possible valoombinations, many of
the parameters will have the same value. Probabilistictgcapmodels avoid this
redundancy by explicitly modeling the conditional indegencies in the domain.
The variables are represented as nodes in a graph and treiedigate dependen-
cies among the variables. Probabilities are computed ve af§unctions defined
over the graph. For example, Bayesian netwarks (Fearl,)18@8 popular model
represented as a directed acyclic graph, in which the jootability is computed
using a set of conditional probability functions, one focleaode in the graph, that
specify the probability of that node taking a particularueagiven the values of its
parents in the graph. Another popular probabilistic gregphmodel are Markov

networks [(Pearl, 1988), which, in contrast to Bayesian ngte; are represented
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by undirected graphs and are therefore easier to learn decme does not need
to ensure that the resulting graph is acyclic. Next, we dlesan detail Markov

networks because they will be important for understanduegaork in this thesis.

2.3.1 Markov Networks

A Markov network (Pearl, 1988), also known as a Markov randaia
(Della Pietra, Della Pietra, & Lafferty, 1997), is repretahas an undirected graph
G in which there is a vertex for each variable in the domain. ifberpretation of
G is that each variablé is conditionally independent of all other variables, given
its immediate neighbors. Because of its importance, thefsetmediate neighbors

of X is called aMarkov Blankebf X and we will denote it with MR&.

The probability distribution defined by a Markov network issdribed by
a set of nonnegative functiogg C;) whereC; consists of the variables in theh
maximal clique ofG. The probability of assigning particular valuego the set of

variablesX in GG (with the cliques having valuas) is:

= IL g9i(ci)
PX=X)= T ale) 1)

The function in the denominator, known as fhetition function simply sums over
the values of the numerator for all possible value assigtsrerthe variables and
serves as a normalizing term. Intuitively, it is possibledpresent a probability dis-
tribution that preserves the conditional independencgsured by as a product
of functions over only the cliques 6f because a variable only directly influences its
neighboring variables. This intuition has been formaliasdhe Hammersley Clif-

ford Theorem|(Hammersley & Clifford, 1971), which stateattli P is a strictly
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positive probability distribution (i.e. every event hasrechance of happening),
then it can be expressed as a product of functions over theadiof a grapld-p if
and only if every conditional independence implied by thiacure ofGp exists in

P.

Markov networks are most commonly represented as log+imeaels where
the functiongy; (C;) take the formexp(\; f;(C;)). The\;-s are called weights, and
the f;-s are called features. With this formulation, Equafioncan be rewritten as

follows:
=x) = exp (32; Aifi(Ci))
PR = 5 o (5 A (G

Apart from their convenience, log-linear models are désralso because it can

(2.2)

be shown that if such a model is used, optimizing the weightsrder to maxi-
mize the data likelihood, leads to the model with the higkestopy (Berger, 1996;
Della Pietra et all, 1997).

2.3.2 Learning of Markov Networks

If the features are given, one effective way of learning treaghts is by
using gradient descent because, for fixed features, ogimizof the weights is
over a convex space (Della Pietra etlal., 1997). One commproaph to learning
the features of Markov networks, also knownsaisicture learningis by proceed-
ing in iterations where in each iteration the feature thaegithe best improve-
ment in data fit is greedily added. For example, Della Pidted 1997) choose
the feature that gives the largest decrease in Kullbackieedivergence between

the empirical distribution of the data and the distributiepresented by the cur-
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rent model. It is also common to add a term that penalizes mmodels (e.g.,
Lee, Ganapathi, & Koller, 2007). These types of approacheteature-centridn
that they focus on selecting the features that give the besteidiate advantage,
without considering the underlying graph structure anditi@ied conditional in-

dependencies among the variables.

An alternative approach to learning Markov networks is toceed in a
graph-centricway by first focusing on establishing a graph structure tliatds
the existing conditional independencies among the vaagahDne such algorithm,
which we will use in Chaptér 4, is the Grow-Shrink Markov Netkw(GSMN) algo-
rithm by Bromberg, Margaritis, and Honavar (2006). For ezatiableX, GSMN
goes through two stages—grow and shrink. In the grow phlasealgorithm incre-
mentally constructs the Markov blanket, MBof each variableX. Initially MB
is empty. The algorithm goes through all other nodes anddt aration, uses the
x? test to determine whethe¥ andY are conditionally independent given MB
whereY is the current potential addition to MB If the two variables are not condi-
tionally independenty” is added to M&. In the shrink phase, GSMN goes through
each nod&” € MB yx and attempts to remove it by testing whetiiérandY are
conditionally independent given MB\ Y. After going through the grow and shrink
stages for each node, GSMN enters a collaboration phaseiaghwie algorithm

ensures that for all pairs of nodasandY, if Y € MB, thenX € MBy..

Graph-centric algorithms for learning of other probahitigraphical mod-
els include SGS and PC (Spirtes, Glymour, & Scheines, 208d jree algorithm of

Margaritis and Thrun (2000), all of which learn Bayesianwaks based on inde-
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pendence tests among the variables, as well as the apprioaicheel, Koller, and Ng

(2006), which constructs Markov blankets using conditi@mropy.

Probabilistic graphical models can effectively repregaabability distri-
butions over a set of variables. However, they can captyper#encies only over
a fixed set of (propositional) variables and cannot congiseldel generally valid
relationships that hold over large groups of objects. Next turn to a short de-
scription of statistical relational learning, which aintsoaercoming this problem
by incorporating ideas from first-order logic, while stilamtaining the advantages

of probabilistic graphical models.

2.4 Statistical Relational Learning

Statistical relational learning (SRL) (Getoor & TaskarQZPcombines ideas
from first-order logic and probabilistic graphical modelsdevelop learning mod-
els and algorithms capable of representing complex relships among entities in
uncertain domains. As opposed to traditional classificatibere it is assumed that
each testing instance is independent of the rest, SRL issbést to situations in
which the entities to be classified are interrelated andadbellof one affects the
classification of the remaining ones in some non-trivial widoreover, SRL ad-
dresses the case where learning occurs from multi-refgtaata, and thus training

instances have varying numbers of entities and relations.

Some popular SRL models include probabilistic relationatels (PRMs)

(Getoor et al., 2001) and Bayesian logic programs (BLPs)dti®g & De Raedt,
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2001), which are both relational analogs to Bayesian nétsyaas well as rela-
tional Markov networks (RMNSs) (Taskar et/ al., 2002) and Markogic networks

(Richardson & Domingos, 2006), which are relational anakogViarkov networks.

In the remainder of this section, we will describe in deta#rkbv logic
networks, which are the SRL model on which this thesis buildg choice of this
model is motivated by the fact that it is highly expressivd anbsumes all SRL
models that can be formed as special cases of first-order &gl probabilistic

graphical models (Richardson, 2004).

2.4.1 Markov Logic Networks

Markov logic networks (MLNS), introduced by Richardson dwimingos
(2006), consist of a set of first-order clauses, each of whigt an associated
weight. MLNs can be viewed as relational analogs to Markdwogks whose fea-
tures are expressed in first-order logic. In this way MLNs bora the advantages
of first-order logic with those of probabilistic graphicabdels while avoiding the
drawbacks of the two representations. In particular, thgressive power of first-
order logic enables MLNs to represent complex generaliogiglips and to reason
about variable numbers of entities using the same model.h®mwther hand, be-
cause the first-order logic features are embedded in thestkank of probabilistic
graphical models, MLNs avoid the brittleness of pure firstev logic by making

worlds that violate some of the clauses less likely but noiggther impossible.

Next, we provide a formal description of MLNs. L&t be the set of all

propositions describing a world (i.e. these are all possgiiterals that can be
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0.7 Actor(A)=- —Director(A)
1.2 Director(A)= —WorkedFor(A, B)
1.4 Credits(T, A)A WorkedFor(A, B)= Credits(T,B)

Figure 2.3: Simple MLN for the sample domain

formed by grounding the predicates with the constants irdtmeain),F be the set
of all first-order clauses in the MLN, and; be the weight associated with clause
fi € F. Let Gy, be the set of all possible groundings of clays@ith the constants
in the domain. Then, the probability of a particular truteiggmentk to X is given

by the formulal(Richardson & Domingos, 2006):

exp (3 e 03 Y e, 900))
>y eXp <Zfi€3~’(Ui de% g(y))

PX=x)= (2.3)
The value ofy(x) is either 1 or 0, depending on whethgis satisfied. Thus
the quantityzgegfi g(x) simply counts the number of groundings ffthat are
true given the current truth assignmentXo The denominator is the normalizing
partition function. Intuitivelyw,; determines how much less likely is a world in
which a grounding off; is not satisfied than one in which it is satisfied. The first-
order clauses are commonly referred tosasicture Figure[2.8 shows a simple
MLN that provides an example for our simplified movie domaiote that the first-
order formulas do not have to have any particular form, &gy are not restricted

to being definite.

To perform inference over a given MLN, one needs to grounutdt its cor-

responding Markov network. As described|by Richardson amehingos [(2006),
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this is done as follows. First, all possible gliterals in tteamain are formed, and
they serve as the nodes in the Markov network. The edges &aardeed by the
groundings of the first-order clauses: gliterals that pgodite together in a ground-
ing of a clause, are connected by an edge. Thus, nodes thedrajggether in a
ground clause form cliques. For example, Figuré 2.4 shoesytbund Markov
network corresponding to the MLN in Figure P.3 using the ¢antscoppolaand
brandoof type person andodFatherof type movieTitle. It is also useful to note
the similarity between equatién 2.3 and equakion 2.2. ML&lsloe considered as
a concise and general way of specifying Markov networks iictvthere is a fea-
ture for each grounding of each clause, and features thedspmnd to the same

unground clause have the same weight.

One technique that can be used to perform inference overdohed Markov
network is Gibbs sampling (Richardson & Domingos, 2006)e §bal of sampling
is to compute the probability that each of a set of query gligeis true, given the
values of the remaining gliterals as evidence. Gibbs samgsliarts by assigning a
truth value to each query gliteral. This can be done eithed@enly or by using a
weighted satisfiability solver such as MaxWalksat (Kautn®n, & Jiang, 1997)
that initializes the truth values to maximize the sum of thegghits. It then proceeds
in rounds to re-sample a value for glitecsl given the truth values of its Markov
blanket MBy (i.e. the variables with which it participates in groundudas), using
the following formula to calculate the probability th&ttakes on a particular value

x.
€SX (x,m)

P(X =z|MBx = m) (2.4)

- eSx(0m) 4 oSx(1,m)’
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Here, Sx(z,m) = Y g wigi(X = z,MBx = m), whereSy is the set of
ground clauses in whick” appears angh is the current truth assignment to IMB
Efficiency can be improved by including only the query ghltisrand those in the
Markov blanket of a gliteral with an unknown value, rathartully grounding the

MLN (Richardson & Domingos, 2006).

An alternative inference approach is MC-SAT that has beemwaslto out-
perform Gibbs sampling in both speed and the accuracy oftiuvened probability
estimates (Poon & Domingas, 2006). In addition, meta-griee techniques have
been developed that improve either memory usage (e.glaS8nBomingos, 2006)

or inference time (e.g., Mihalkova & Richardson, 2009).

2.4.2 Learning Of Markov Logic Networks

Learning of MLNs can proceed in two ways, discriminativelygenera-
tively. In discriminative training, one or more predicateisose values will be un-
known at test-time are designated as target predicatedeanung optimizes the
performance with respect to them, assuming that valuebéxmetmaining predicates
will be given. In generative training, all predicates amated equally. Roughly
speaking, discriminative training is appropriate whersiknown ahead of time
what kind of predictions will need to be performed with tharleed model, whereas
generative training is appropriate when it is not known dhefdime how the model
will be used so that the learned model needs to capture asaspeygts of a domain
as possible. Detailed studies of the relative advantagésedfvo styles of training

are available (e.g., Liang & Jordan, 2008).

28



Actor(brando)
Director(brando)

WorkedFor(brando, brando) WorkedFor(brando, coppola)
Credits(godFather, brando) - Credits(godFather, coppola)

WorkedFor(coppola, brando) WorkedFor(coppola, coppola)

Director(coppola)
Actor(coppola)

Figure 2.4: Result of grounding the sample MLN

As with Markov networks, there are two parts to learning anNvithe

weights and the structure.

Weight Learning: [Richardson and Domingos (2006) propose performing gener-
ative weight learning for a fixed set of clauses using L-BFGST. Liu & Nocedal,
1989), a second-order optimization procedure, to optitfie@seudo log-likelihood
(Besag, 1966). Several approaches have been proposeddoindnative learn-
ing, where the conditional log-likelihood is optimized ti@ad. The earliest, by
Singla and Domingos (2005), follows a voted-perceptr&a-kpproach. (Collins,

2002), where the gradient of the conditional log-likelidowith respect to the
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weight of a given claus€’; is computed as the difference between the number
of true groundings of”; in the data and the expected number of true groundings
of C; according to the current weights. Calculating this exgemarequires in-
ference over the learned model, and Singla and Domingos5jaded the num-
ber of true groundings of’; in the most likely assignment of truth values to ap-
proximate it. In later work, Lowd and Domingos (2007) comsetl calculating
the expectation by performing a few steps MC-SAT inferenthes obtaining a
contrastive-divergence-like approach (Hinton, 2000). Cimapter b, we will use
this algorithm, which we adapt for online learning. Lowd dhaimingos |(2007)
also studied more sophisticated techniques, such as thermuitioned scaled con-
jugate gradient algorithm that uses the inverse diagonakide matrix as a pre-
conditioner. Huynh and Mooney (2008) introduce a weighatiéng technique that
targets the case of MLNs containing only non-recursivesﬂa@ Because of this
special assumption on the structure of the model, theiragmbr can perform exact
inference when calculating the expected number of truergtimgs of a clause; a
second novelty is the use @f; regularization to obtain sparser models in which
many clauses have weight 0. Recently, Huynh and Mocney (288 introduced

a discriminative learner that maximizes the margin betwesgnative and positive

gliterals in the training data.

Structure Learning:  Structure learning is a highly computationally intensive-p

cess. The first MLN structure learner, due to Kok and Domin@6€5%), proceeds

Non-recursive clauses mention a target predicate at mast on
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in a top-down fashion, employing either beam search or ekbfirst search. We
will discuss and compare to the beam search version, whicilweall kD after

its authors. The shortest-first search constructs carefidiathe same way but con-
ducts a more complete search, which, however, requiregfdngning times kb
performs several iterations of beam search, and after éaretion adds to the MLN
the best clause found. Clauses are evaluated using a wejggededo log-likelihood
measure (WPLL)(Kok & Domingos, 2005), an extension of pselod-likelihood
(Besag, 19€6), that sums over the log-likelihood of eachengiglen its Markov
blanket, weighting it appropriately to ensure that preisavith many gliterals do
not dominate the result. The beam search in each iterataots stom all single-
vliteral clauses. It generates candidates by adding aalite each possible way to
the initial clauses, keeps the béstmSize clauses, from which it generates new
candidates by performing all possible vliteral additiokegps the bestcam.Size
and continues in this way until candidates stop improvirgWPLL. At this point,
the best candidate found is added to the MLN, and a new bearohsgeration
begins. Weights need to be learned for a given structuredé®WPLL can be
computed. K has been empirically shown to outperform an impressive reumb
of competitive baselines (Kok & Domingos, 2005). In parkiyit performed bet-
ter than several popular inductive logic programming athars and also outper-

formed purely probabilistic methods.

At the time of writing of this manuscript, Kok and Domingo<() have
justintroduced HL, a new algorithm for MLN structure learning, which, likesL,

presented in Chaptél 4, embraces a bottom-up perspectiMe. performs rela-
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tional pathfinding!(Richards & Mooney, 1992) oritted hypergraphconstructed
by clustering the constants in the data; lifting the hypapgrallowsLHL to search
for longer paths thaBusL in a reasonable amount of time. We discuss the perfor-

mance of_LHL in Chaptef 4.

The above two algorithms take a generative approach. Digtative struc-
ture learners have also been introduced. Huynh and Moor@8j2use AEPH
(Srinivasan, 2001), a bottom-up ILP system, to learn naomsgve clauses. They
found that for molecular biology domains in which the claiserve primarily to
describe complex molecules and tend to be very long, leaswarh as AEPH that
have been especially designed to deal with such challemges more accurate
structurel Biba, Ferilli, and Esposito (2008) have introgtlia discriminative struc-

ture learning algorithm based on iterated local search.
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Chapter 3

Transfer Learning with MLNs

Traditional machine learning algorithms operate undesimption that
learning for each new task starts from scratch, thus disgéggaany knowledge
gained previously. In related domains, thakula rasaapproach would waste data
and computer time to develop hypotheses that could have leeewered faster
from previously acquired knowledge. Transfer learningpanown as learning to
learn (Thrun & Pratt, 1998) or domain adaptation (BlitzecDénald, & Pereira,
2006), addresses the problem of how to leverage knowledye felatedsource
domains in order to improve the efficiency and accuracy ahieg in a newtarget
domain (Silver et all, 2005; Banerjee et al., 2006; Taylerni-& Driessens, 2008).
Transfer learning is also one of the most effective techesdgor enabling learning
in situations when an adequate amount of training data #otabk of interest is not

available.

In this chapter, we present two approaches for transfer oNMtructure.
The first technique improves the speed and accuracy of leghyi operating under
the assumption that a substantial amount of data for thetttagk is provided. The
second technique addresses the challenging scenario atggi-tlomain data is

severely limited. Unlike most work in transfer learningy @ontributions address
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the setting of multi-relational data and do not assume tiesburce and target do-
mains use the same representation. Before presenting ouiibzdions, we review

related work.

3.1 Related Work

Transfer learning algorithms have been demonstrated toowvepearning in
a variety of settings. In this section, we discuss relatetkwm provide a glimpse

of the numerous transfer algorithms that have been develope

3.1.1 Multi-task Transfer Learning

Transfer learning has been studied in two main settingsheémulti-task
setting, the algorithm is presented with all domains siamébusly during train-
ing and thus can build common structure of the learned modets example,
Caruanal(1997) trained neural networks with a shared hitigem on two or more
tasks simultaneously. A related approach is used by Nicul®sizil and Caruana
(2005,12007) for simultaneous training of Bayesian networkn a similar set-
ting, /Ando and Zhang (2005) perform optimization over a $daeks simultane-
ously to find an optimal parameterization of the hypothegeces, and then opti-
mize a linear predictor from this hypothesis space for tingetatask. Ando and
Zhang’s algorithm serves as the basis of structural cooreggnce learning (SCL),
a transfer learning approach that assumes the availabflitsbeled data only in
the source tasks and little or no supervision in the targit (Blitzer et al.| 2006).

SCL has been applied to natural language problems suchtasfgsgreech tagging
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(Blitzer et al., 2006) and sentiment classification (BlitZeredze, & Pereira, 2007)
and operates by inducing a mapping between the feature spatee source and
target domains. This mapping is produced by using so-calieat features that

behave identically in the source and target tasks; the mat-fgatures are mapped

across the two domains if they correlate with many of the spiva features.

3.1.2 Single-task Transfer Learning

In an alternative transfer setting, tasks are presenteldetéetarner one by
one, and the goal is to improve learning on the current, tatgsk by utilizing
knowledge acquired in previous learning domains. One ok#réest approaches,
the TC Algorithm by Thrun and O’Sullivan (1996), improvesget task perfor-
mance of a nearest-neighbor algorithm by transferring istauace metrics learned
on related problems over the same feature space. An integespect of the TC
algorithm is that, rather than assuming that the previcaslgountered tasks are
similar, it autonomously determines task relatedness imgusvalidation set to es-
timate how likely it is that a distance metric optimized fquravious task improves
performance on the target task. Bonilla et al. (2006) pre@omethod for transfer
learning for estimation of distribution algorithms (EDAj) which a solution to an
optimization problem is found by progressively developadjstribution over solu-
tions that estimates the likelihood that a particular sotuis optimal. In their work,
transfer is achieved by initializing the EDA algorithm witie solution distribution
of previously-solved problems. This is done by either conirig) the predictive dis-

tributions from all previous problems or from tlhemost similar ones, which are
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found using &-nearest-neighbor algorithm. Raina, Ng, and Koller (200 sev-

eral related source tasks to construct the covariancexafatra Gaussian prior in

a text classification task.

Transfer learning approaches have also been developedifdonrcement
learning (e.g., Taylor, 2008). For example, Taylor, Sta@mel Liu (2005) use the
value function learned in a source task to initialize reioément learning in the
target task. Value function transfer is also used by Baperel Stone (2007) to
transfer knowledge across game-playing domains by usatg &tatures extracted
from look-ahead game trees. Torrey, Walker, Shavlik, andliM42005%) propose
extracting advice from the value function learned in therseuask, which is then
provided to a reinforcement learner in the target task. draWhiteson, and Stone
(2007) propose using policies learned in the source taskréatdreinforcement

learning in the target task in a more promising direction.

The reinforcement learning community has also studiedstearnof rela-
tional models (e.g., Torrey, 2009). In particular, in a sgmf works, Torrey et al.
have used relational representations to improve the pedoce of a reinforcement
learning agent in a variety of ways: by using relational roado learn general
descriptions of successful strategies in the source td¥X/(2 by transferring a Q-
function represented using an MLN (2008); and, most reggtattransfer a policy
represented as an MLIN (2009). In related work, Croonenisoeghl. (2007) have
introduced an algorithm that learns relational optionsdo@ational reinforcement
learning. Guestrin, Koller, Gearhart, and Kanodia (2033 relational representa-

tions as a vehicle for transfer in planning domains.

36



The work most relevant to this thesis concerns transfersaaeational do-
mains.| Davis and Domingos (2008, 2009) use second-ordd{d\lla\mgitﬂ to de-
velopDTM, an approach that performs transfer across relational shentlaat are
potentially very different on the surface by learning setonder “clique templates”
that capture general regularities, useful across a vaofetipmains. Second-order
MLNSs are crucial in this respect because they provide a sgmtation independent
of the one used in the source task. Another important cheniatit ofDTM is that
it uses a special learning procedure in the source task gr éodncrease the like-
lihood that the acquired knowledge is useful across doméhisis in contrast to
approaches like the ones introduced in this chapter thatsfoa how to make the
most out of a pre-existing model, learned to maximize penéorce specifically on

the source task.

3.1.3 Transfer as Mapping

In some cases, successful transfer requires the repréearafthe source
domain to be mapped to that of the target domain. One pasgisifor the human
designer to provide a hand-constructed mapping (e.g.ofavlal., 2005). A more
widely applicable approach, however, is one that autoralliyienduces a useful
mapping (e.gl, Blitzer et al., 2006; Y. Liu & Stone, 2006; ltayKuhlmann, & Stone,
2008). Closest to the research we present in this chaptbe isttucture-mapping

engine (SME)|(Falkenhainer, Forbus, & Gentner, 1989; Fofh®blinger, 1990).

In second-order models, one considers variables over #tqates in the domain, not just over
the constants.
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SME discovers global one-to-one mappings between theoetatind entities in
two domains by combining consistent local mappings. Locgbpings are formed
by matching structural knowledge between the two domaimisraquire at least
some information on the structure of the target domain, tlee dependencies
among its relations. Mappings are evaluated based on acsigntstructural cri-
terion, calledsystematicitywhich does not consider the accuracy of the resulting

inferences in the target data.

Y. Liu and Stone!|(2006) have adapted SME to perform transfeossa re-
inforcement learning tasks whose dynamics are describepi@#ative dynamic
Bayesian networks (QDBN).They test their method, which works by automati-
cally mapping the structure of the source and target-tasBi) on transfer across

simulated robotic soccer domains.

3.1.4 Transfer as Revision

Transfer learning can also be approached as a revisionitagkich the
source knowledge is viewed as a partially correct model ieatds to be refined.
Revision algorithms have been developed for a variety ahieg models. One
such algorithmfoRTE, was described in Section 2.2.40RTE has been recently
extended by Duboc, Paes, and Zaverlcha (2008) to allowrfpe Epeed-ups while
maintaining the accuracy of the revised theories. Paes @Q5) extendedORTE
to allow it to handle Bayesian logic programs (Kersting & Daeldt) 2001). These

FORTEbased algorithms first diagnose the provided model andftizers the search

2A QDBN is a dynamic Bayesian network that can have links dedént types.
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for revisions on the potentially faulty regions. An analag@pproach is used by
Ramachandran and Mooney (1998) for revision of Bayesiawar&s where the
source networks are instrumented with leak nodes that areubked as indicators

for errors. None of these previous works, however, wereiegpb transfer learn-

ing.

3.2 RTAMAR: When Target-Domain Data is Sufficient

The problem of transferring the structure of an MLN from arseuo a tar-
get domain can be viewed as consisting of two parts. Firgirder to translate the
source structure to the target domain, a correspondeneebetthe predicates of
the source domain and those of the target domain needs tadi#igised. Second,
once the source structure has been translated, it needsdwibed in order to adapt

it to the target domain.

This section focuses on solving the second problem andidesoour al-
gorithm for revising the structure of the source MLN when deguate amount of
data from the target domain is available. The algorithm mesthat the predicates
in the source structure have been mapped to the target doifihis is a safe as-
sumption because this mapping capability was developediggT Huynh as part
of TAMAR, a complete transfer system (Mihalkova, Huynh, & Mooney)20 We
will call the mapping portion offAMAR, MTAMAR. MTAMAR uses the concept
of atype-consistentapping. A mapping of a source clause to the target domain
implies a correspondence from the source predicates ildheeto a subset of the

target predicates. Such a correspondence between a soadiegpe and a target
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predicate implicitly defines a mapping between the typedhefarguments of the
two predicates. A mapping tgpe-consisterif, within a clause, a type in the source
domain is mapped to at most one type in the target domallaRMAR maps each
source clause independently of the others by evaluatingpabible type-consistent
mappings with the WPLL score (Kok & Domingas, 2005) (desedilon pagé 31),

computed on the target data. The mapping that achievesghegtiscore is output.

Example 3.2.1.To illustrate MTAMAR, we consider transfer from an academic
domain, which contains information about the students antepsors in a depart-
ment, their publications, advising relationships, teaghactivities, etc., to a do-
main about the movie business, such as the one we consiadeEdmpld 2.1J1.
These two domains use different representations, i.endistets of predicates, but
because they both concern human interactions, we expeet thde significant
similarities between them that would make transfer leaymieneficial. Figure 3l1
(Mihalkova et al., 2007) shows an instance of such trangterhich a single clause
is being transferred from the source domain. The sourceselatates that if pro-
fessorA and studenf3 are authors of the same publication, théms B’s advisor.
MTAMAR maps this source clause to the target movie domain, usinigetstenap-
ping it found, shown in the figure. The resulting mapped aaiates that if director

A and actorB appeared in the credits of the same movie, tBamorked for A.

3.2.1 Revision of MLN Structure for Transfer

Once the source clauses have been mapped to the target ddmegimay

need to be further revised. This task is carried ouRbBYMAR, the revision part of
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Source clause:
Publication(T, A)A Publication(T, B)A Professor(A)\ Student(B)A
—SamePerson(A, B} AdvisedBy(B, A)

Best mapping:
Publication(title,person) — Credits(movie,person)
Professor(person) — Director(person)
Student(person) — Actor(person)
SamePerson(person,persenpamePerson(person,person)
AdvisedBy(person,person)» WorkedFor(person,person)

Clause mapped to target domain:
Credits(T, A)A Credits(T, B)A Director(A) A Actor(B) A
—SamePerson(A, B} WorkedFor(B, A)

Figure 3.1: An example output of the predicate mapping &lgor

TAMAR. The skeleton oORTAMAR has three steps and is similar to that affF E

(Richards & Mooney, 1995), which revises first-order thesri

1. Self-Diagnosis:The purpose of this step is to focus the search for revisions
only on the inaccurate parts of the MLN. The algorithm ingpélce source
MLN and determines for each clause whether it should be shed, length-
ened, or left as is. For each clauSg this is done by considering every
possible implication rewrite of’ in which one of the literals is placed on
the right-hand side of the implication and is treated as theckusion and
the remaining literals serve as the antecedents. The anlof a clause is
drawn only if the antecedents are satisfied and the clauss . il hus, if a
clause makes the wrong conclusion, it is considered forthargng because

the addition of more literals, or conditions, to the antezed will make them
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harder to satisfy, thus preventing the clause from firing. ti@nother hand,
there may be clauses that fail to draw the correct conclusoause there are
too many conditions in the antecedents that prevent them firng. In this

case, we consider shortening the clause.

2. Structure Update: Clauses marked as too long are shortened, while those

marked as too short are lengthened.

3. New Clause DiscoveryNew clauses are found in the target domain by rela-

tional pathfinding (RPF)_(Richards & Mooney, 1992).

We next describe each step in more detail.

3.2.1.1 Self-Diagnosis

A natural approach to self-diagnosis is to use the traredievdLN to make
inferences in the target domain and observe where its ddageThis suggests that
the structure can be diagnosed by performing Gibbs sampliagit. Specifically,
this is done as follows. Each predicate in the target donsagxamined in turn.
The current predicate under examination is denotefd*a$elf-diagnosis performs
Gibbs sampling withP* serving as a query predicate with the values of its gliterals
set to unknown, while the gliterals of all other predicatesve evidence. In each
round of sampling, in addition to re-sampling a value foteghl X of P*, the

algorithm considers the set of all ground clau§gsin which X participates.

Each ground clausé € Gy can be placed in one of four bins with respect to

X and the current truth assignments to the rest of the glgefdese bins consider
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Director(coppola) Actor(brando)
Credits(godFather, brando) Credits(godFather, coppola)
Credits(rainMaker, coppola) WorkedFor(brando, coppola)

Figure 3.2: Example relational database

all possible cases of the premises being satisfied and theusion being correct.
We label a clause as Relevant if the premises are satisfiebirateyant otherwise.
For positively weighted clauses, we mark a relevant clagséaod if and only if
its conclusion is correct, and we mark an irrelevant clase@od if and only if the
conclusion is incorrect. The Good/Bad labels are flippedtkauses with negative
weights. The four bins are defined by all possible ways of magrla clause as

Relevant/Irrelevant and Good/Bad.

Let v be the actual truth value of. This value is known from the data,
even though for the purposes of sampling we have set it toawkn As an illus-
tration, we will use some groundings of the clauses in FiguBewith respect to the
data in Figuré 312 (copied from pagel 18 for convenienceplisthe current truth
assignments to the gliterals (the ones present are truegshare false). Figute 3.3
also lists rewrites of the clauses in implication form where implication has the
target predicate as a conclusion. This will be helpful in ¢éxposition of the al-
gorithm. LetX = Actor(brando) with v = true. The following descriptions

assume positive weights. The negative weight cases are sriiom

Relevant; Good: This bin contains clauses in which the premises are satiafidd

the conclusion drawn is correct. For example(ifis a grounding of the
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Clausal form Implication form wrt target predicatetor

Director(A)vVActor(A) —Director(A) = Actor(A)
Credits(M, A)v—Actor(A) —Credits(M, A)= —Actor(A)
—WorkedFor(B, A)y—Actor(A) WorkedFor(B, A)= —Actor(A)

Actor(A)v—Credits(M,A)v—WorkedFor(A, B)  Credits(M, A\ WorkedFor(A, B)= Actor(A)

Figure 3.3: Clauses in example MLN for diagnosis

first clause in Figure 313 with the constdmmando , i.e. in implication form,
—Director(brando)}=- Actor(brando), it falls in this bin. We can alternatively
describe clauses in this bin as ones which are satisfied by has truth

valuew, the value it has in the data.

Relevant; Bad: The clauses in this bin are those whose premises are satisfied
the conclusion drawn is incorrect. One such clauseGsedits(rainMaker,
brando)= —Actor(brando). Considering the clausal form, Credits(kéaker,
brando)v—-Actor(brando), we see that this bin contains clauses tieabaly

satisfied ifX has value-v, the negation of its correct value in the data.

Irrelevant; Good: This bin contains clauses whose premises are not satisfidd, a
therefore the clauses do not “fire,” but if they were to firege ttonclusion
drawn would be incorrect. One such clause is WorkedFor(@apgprando)
= —Actor(brando). In clausal form this formula tsWorkedFor(coppola,
brando)v—-Actor(brando). Thus a more mechanical way of describing the
clauses in this bin is that they are satisfied regardlesseofdlue ofX in the
data; however, the literal correspondingXan C'is true only if X has value

.
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Irrelevant; Bad: The clauses in this bin are those whose premises are not satis
fied, but if the clauses were to fire, the conclusion would beecd. One
such clause is Credits(rainMaker, brandd)VorkedFor(brando, coppola)
Actor(brando). If we consider the clausal form, Actor(ldahVv—Credits
(rainMaker, brando) —WorkedFor(brando, coppola), we can alternatively
describe the clauses in this bin as ones that are satisfiddiegs of the
value of X and in which the literal corresponding #0in C'is true only if X

has valuey.

Note that, although our examples only use clauses thatioansingle literal ofP*,
the algorithm handles clauses with multigtéliterals by setting the ones appearing

in the premises to their truth values from the current iteradf Gibbs sampling.

This taxonomy is motivated by EquationR.4, reprinted hereénvenience:

€SX (x,m)

P(X =z|MBx = m) (3.1)

- eSx(0m) 4 oSx(1,m)

The probability ofX = x is increased only by clauses in tfiRelevant; Good]
bin and is decreased by clauses in fRelevant; Bad] bin. Clauses in the other
two bins do not have an effect on this equation because tbairibution to the
numerator and denominator cancels out. To see how this happensider a clause
girr € Gx from the set of ground clauses in which participates, such that,.,

is satisfied regardless of the truth valueXof The quantitySy (z, m) from Equa-
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tion[3.1 can be rewritten as follows:

Sx(z,m) = Y wgi(X =2,MBx =m) (3.2)
9i€5x
= Y, wg(X=u,MBx =m)
gi€Gx ,iFirr
+Wipr Girr (X = 2, MBx = m) (3.3)
9i €S x iFirr
= Sy(z,m) + wi, (3.5)

The next-to-last line follows becausg, was picked such that the valuegf,. (X =
r,MBx = m) is 1 regardless of. Using this derivation, we can rewrite Equa-
tion[2.4 as follows:

6SX (:B’m)

P(X =z|MBx =m) = S Om) . oSx (L) (3.6)

633} (5(771'11) + Wi

- (3.7)

eS;( (0,m)+wirr —+ esj)k( (1,m)+wirr

eWirr 65;( (z,m)

T (S Om) - (S5 (Tm) (3.8)

As can be seen in life 3.8, the contributionggf., ¢*i*, can be canceled from the

numerator and denominator.

If some of the literals other thaX in an [Irrelevant;, Bad] clause, are
deleted so thaK'’s value becomes crucial, it will be moved to fiiRelevant; Good]
bin. Similarly, if we add some literals to[®elevant; Bad] clause so that it starts
to hold regardless of the value &f, it will enter the[lrrelevant; Good] bin and

will no longer decrease the probability &f having its correct value.
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As the value of a gliteral is re-sampled in each iteration S sampling,
for each clause in which the gliteral participates, we cabatnumber of times it
falls into each of the four bins. Finally, if a clause was pldn the[Relevant;
Bad] bin more thanp percent of the time, it is marked for lengthening and if it
fell in the [Irrelevant; Bad] bin more tharp percent of the time, it is marked for
shortening. We anticipated that in the highly sparse m@haii domains in which
we tested, clauses would fall mostly in tflerelevant; Good] bin. To prevent
this bin from swamping the other ones, we geb the low value ofl0%. This
value was set during earlier experiments on artificial dténélkova & Mooney,
2006) and was not tuned to the data used for the experimezgsned here. In the
future, it would be interesting to consider ways in whichlsparameters can be set
automatically. The process described above is repeateshfdr predicatel’*, in

the target domain.

3.2.1.2 Structure Updates

Once the set of clauses to revise is determined, the actdatepare per-
formed using beam search. Beam search proceeds in itegationeach itera-
tion, all possible literal additions or deletions are parfed to the set of current
candidates, thew best-performing are kept, and a new iteration begins. nlik
Kok and Domingas (2005), however, we do not consider all iptesadditions and
deletions of a literal to each clause. Rather, we only tryaenyg literals from
the clauses marked for shortening and we try literal adustionly to the clauses

marked for lengthening. The candidates are scored usinglMVHRius, the search
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space is constrained first by limiting the number of clausesiclered for updates,

and second, by restricting the kind of update performed ch ekuse.

3.2.1.3 New Clause Discovery

The revision procedure can update clauses transferredtfrersource do-
main but cannot discover new clauses that capture reldijpsmispecific only to the
target domain. To address this problem, we used RPE (Risl&aMooney, 1992)
(described in Section 2.2.3) to search for new clauses inatfgeet domain. The
clauses found by RPF were evaluated using WPLL, and the baesiiproved the
overall score were added to the MLN. RPF and the previoustsirel updates step
operate independently of each other; in particular, thesda discovered by RPF
are not diagnosed nor revised. However, we found that betselts are obtained
if the clauses discovered by RPF are added to the MLN befargiog out the
revisions. This can be explained as follows. The revisi@p $ills the resulting
structure with clauses that together achieve a very good WiPLthe training data.
If we perform RPF after this, even though it finds clauses éina@tvery reasonable
and would perform quite well, the MLN already has other cémuhat interfere. In
this way, the good clauses discovered by RPF sometimes endtuyeing added.
On the other hand, if we first add the RPF clauses to the MLN; ¢jine an ini-
tial boost in WPLL and also constrain the beam search, cgusio finish faster

because it has less to improve.
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3.2.2 Experiments

In this section we present an experimental evaluatiomefar. First, we
describe our methodology, which will also be used for thesexpents in Chaptér 4.

We then discuss the results specifictmAR.

Experimental Methodology: We used three relational domains—IMDB, UW-
CSE, and WebKB. Each data set is broken imega-examplesvhere each mega-
example contains a connected group of facts. Individualaregmples are inde-
pendent of each other. By arranging multi-relational data mega-examples, we
are able to carry out principled cross-validation expentagwhere, because mega-
examples are independent of one another, we can provideastraning data and
test on the rest. This is preferable to breaking up mega-pleanbecause in the
latter case, it is not clear how to break up the relations endéta so that there is

sufficient information for training and the test data is nmtaminated.

The IMDB database is organized as five mega-examples, eaatioh
contains information about four movies, their directonsg &he first-billed actors
who appear in them. Each director is ascribed genres bas#teayenres of the
movies he or she directed. The Gender predicate is only assthte the genders
of actors. The complete list of predicates in this domainvemyin Figurd 3.4 (a).
This data sgtis dramatically smaller than the data available from therimational
Movie Databasewyww.imdb.com ). The reason for this is that originally the data

set was intended to be used as a target domain in which dataitisd.

3Available fromhttp://www.cs.utexas.edu/ ~ml/mins |under “Data sets.”
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The UW-CSE database was compiled by Richardson and Dom(EQOES)H
It lists facts about people in an academic department$tedent , Professor )
and their relationships (i.&AdvisedBy ). The complete list of predicates is given
in Figure[3.4 (b). The database is divided into mega-exasrphsed on five areas

of computer science.

The WebKB database contains information about human oelstips from
the “University Computer Science Department” data set,pited by Craven et al.
(1998). The original data set contains Web pages from foureusities labeled
according to the entity they describe (e.g. student, couesewell as the words
that occur in these pages. Our version of WeiCBntains the predicates listed in
Figure[3.4 (c). The textual information is ignored. Thisadabntains four mega-
examples, each of which describes one university. To extnactruth values for
these predicates, we used the files from the original datthaetist the student,
faculty, instructors-of, and members-of-project relasibips. We treated each Web
address in these files as an entity in the domain and usedlibedathe corre-
sponding page to determine the gliteral truth values. Taldlerovides additional

information about the domains.

To evaluate a given MLN, one needs to perform inference ayepro-
viding some of the gliterals in the test mega-example aseenid and testing the
predictions of the remaining ones. We followed the testicigesne employed by

Kok and Domingas (2005) and tested for the gliterals of eddhe predicates of

4Available athttp://alchemy.cs.washington.edu/ under “Datasets.”
5Available athttp://www.cs.utexas.edu/ ~ml/mins/ |under “Data sets.”
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(a) Predicates in IMDB

Director(person) _ _

Actor(person) (b) Predicates in UW-CSE

Movie(title, person) TaughtBy(course, person, semester)

Gender(person, gend) CourseLevel(course, level)

WorkedUnder(person, persof) Position(person, pos)

Genre(person, genr) AdvisedBy(person, person)

SamePerson(person, persor)) ProjectMember(project, person)

SameMovie(title, title) Phase(person, phas)

SameGenre(genr, genr) TempAdvisedBy(person, person)

SameGender(gend, gend) YearsInProgram(person, year)
TA(course, person, semester)

_ _ Student(person)

(c) Predicates in WebKB Professor(person)

Student(person) SamePerson(person, person)

SamePerson(person, person) SameCourse(course, course)

Faculty(person) SameProject(project, project)

Project(projname, person) Publication(title, person)

CourseTA(coursename, person)

CourseProf(coursename, person)

Figure 3.4: Predicates in each of our domains. The argurgpastfor each predi-
cate are listed in the parentheses.

the domain in turn, providing the rest as evidence, and gusgaover the results.
However, for inference we used the MC-SAT algorithm thattbesn demonstrated
to give more accurate resulis (Poon & Domingos, 2006). Tferénce procedure
outputs the probability that each of the query gliteralsugt To summarize these
results, we used two standard evaluation metrics commohdanSRL commu-
nity that were also employed by Kok and Domingos (2005): treaainder the
precision-recall curve (AUC) and the conditional log-likeod (CLL). To com-

pute the AUC, first a precision-recall curve is generateds T&done by varying a
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Data Set| Number of| Number of| Number of| Number of True| Total Number of
Consts Types Preds Gliterals Gliterals
IMDB 316 4 10 1,540 32,615
UW-CSE 1,323 9 15 2,673 678,899
WebKB 1,700 3 6 2,065 688,193

Table 3.1: Details about the domains.

probability threshold whose value determines which pramrs are labeled pos-
itive and which negative; i.e. the ones whose probabilitpeig true is greater
than the threshold are positive and the rest are negative.pfigcision and recall

are computed as follows:

Number of propositions correctly labeled as positive

Precision= — —
Number of all propositions labeled as positive

Recall— Number of propositions correctly labeled as positive
~ Total number of positive propositions in the data

A curve is produced by plotting a point for the precision aadatl obtained at a
set of threshold values. The AUC is the area under this curiie. AUC is useful
because it demonstrates how well the algorithm predictdeWwepositives in the
data and is not affected by the large number of true negaiyyesally present in
relational data sets (the reader is encouraged to companeithber of true gliterals

to the total number of gliterals in Tadle B.1).

The CLL is computed by taking the log of the probability ptdd by the
model that a gliteral has its correct truth value in the datel averaging over the
query gliterals. The CLL complements the AUC because itrdatees the quality

of the probability predictions output by the algorithm.
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Learning curves for each performance measure were gedessitey a leave-
1-mega-example-out approach, averaging exdifferent runs, wheré is the num-
ber of mega-examples in the domain. In each run, we resenrdiffeaent mega-
example for testing and trained on the remaining 1, which were provided one
by one. All systems observed the same sequence of mega-ksampe error bars
on the curves are formed by averaging the standard errortbgesredictions for
the groundings of each predicate and over the learning fansr bars are drawn

on all curves but in some cases they are tiny.

We also present results on the training times needed by dnedes, and the
number of clauses they considered in their search. Timing mithin the same

transfer experiment were conducted on the same dedicatelimea

Systems Compared: We compared the performance of the following systems.
KD run from scratch (S&m) in the target domairkb used to revise a source struc-
ture translated into the target domain usm@aMAR (TrkD); and the complete

transfer system using TAMAR andRTAMAR (TAMAR).

We used the implementationwb provided as part of the Alchemy software
package (Kok et al., 2005) and implemented our new algostaspart of the same
package. We kept the default parameter settings of Alchermgp that we set
the parameter penalizing long clauses to 0.01, the onefgperithe maximum
number of variables per clause to 5, and the minWeight paearte0.1 in IMDB
and WebKB and to 1 in UW-CSE, the value used.in (Kok & DomingxX)5). All

three learners used the same parameter settings.
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We considered the following transfer scenarios: WebkBIMDB, UW-
CSE— IMDB, WebKB — UW-CSE, IMDB — UW-CSE, where the notation Do-
main 1 — Domain 2 means transfer from Domain 1 to Domain 2. We did not
consider transfer to WebKB because the small number of gz and large num-
ber of constants in each mega-example, which representdiam @niversity, made
it too easy to learn from scratch in this domain. WebKB is ¢ifigre a good source
domain but uninteresting as a target domain. Source MLNg \earned by S&m.
We also consider the scenario where the hand-built knowel®adge provided with
the UW-CSE data is used as a source MLN (UW-KBIMDB). This knowledge
base was written by human volunteers who were instructedite general facts
about academia in first-order loglc (Richardson, 2004)his interesting twist on
traditional theory refinement, the provided theory needsetmapped to the target

domain, as well as revised.

Results: The full learning curves are presented in Appendix 1. Hereswama-
rize them using two statistics: the transfer ratio (TR) (@ohChang, & Morrisan,
2007), and the percent improvement from 1 mega-exampleTRI)s the ratio be-
tween the area under the learning curve of the transferdegramAR or TrkD)

and the area under the learning curve of the learner fronaicéc(&ckD). Thus, TR
gives an overall idea of the improvement achieved by trarsfer learning from
scratch. TR> 1 signifies improvement over learning from scratch in thgeado-
main. PI gives the percent by which transfer improves aayuoaer learning from

scratch after observing a single mega-example in the tdagetin. It is useful be-
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TR Pl
Experiment TrkD | TAMAR || TrkD | TAMAR
WebKB — IMDB 151 | 155 | 50.54| 53.90
UW-CSE— IMDB | 1.42 | 1.66 | 32.78| 52.87
UW-KB — IMDB 161 | 152 | 40.06| 45.74
WebKB — UW-CSE | 1.84 | 1.78 | 47.04| 37.43
IMDB — UW-CSE | 0.96 | 1.01 | -1.70| -2.40
Average 147 | 150 || 33.74| 37.51

Table 3.2: Transfer ratio (TR) and percent improvement flomega-example (PI)

on AUC over SckbD.

cause in transfer-learning settings data for the targetagom frequently limited.

In terms of AUC (Tablé_3]2), both transfer systems improver@&ckD in
all but one experiment. Neither transfer learner consiteutperforms the other
on this metric, but on average over the five experimemtsiArR performs slightly
better. We note that in transfer to UW-CSEAMAR’s Pl is smaller than that of
TrkD, even though their TRs are roughly the same. We conjectatéhls happens
because the mega-examples in UW-CSE are not identicatiytilised. Each mega-
example in this domain represents one area of computercggiand the types and
amounts of interaction among the entities vary across aréasa result, when
TAMAR uses just one of these mega-example to self-diagnose theesstnucture,
it may be misled by the peculiarities of that mega-exam@asmg it to mis-assign
source clauses to bins. This is corroborated by the factttteaperformance of
TAMAR and TKD becomes roughly the same when more mega-examples are pro-

vided, as indicated by the roughly equal TRs and as can alsedyefrom the full

learning curves in AppendiX 1.
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TR Pl
Experiment TrkD | TAMAR || TrkD | TAMAR
WebKB — IMDB 141 | 146 | 51.97| 67.19
UW-CSE— IMDB | 1.33 | 1.56 | 49.55| 69.28
UW-KB — IMDB 121 | 144 | 30.66| 58.62
WebKB — UW-CSE | 1.17 | 1.36 | 19.48| 32.69
IMDB — UW-CSE | 1.62 | 1.67 | 34.69| 54.02
Average 1.35| 1.50 || 37.27| 56.36

Table 3.3: Transfer ratio (TR) and percent improvement flomega-example (PI)
onCLL over SckbD.

Table[3.8 shows that transfer learning always improves @aning from
scratch in terms of CLL, andAMAR’s performance is better thanKip’s in all
cases. Inthe last experiment, IMDB UW-CSE, we observe that transfer improves
over learning from scratch in terms of CLL but is worse in terai AUC. This
demonstrates that AUC and CLL complement each other. Weugethis slightly

worse performance of the transfer systems is probably duentiom variation.

Moreover, as can be seen from Tablel 3AWAR trains faster than KD,
and both transfer systems are faster thaikScmrAMAR also considers fewer can-
didate clauses during its beam search, as can be seen ir3[@blaccording to a
t-test performed for each point on each of the learning ayrethed5% level with
sample size 5 per point, these differences were significab®iout of 20 cases for
speed and 18 out of 20 for number of candidates. In some cagescbnsiders
more candidates than @ but takes less time to train. This can happen KOr
considers more candidates earlier in the learning curveenvetach candidate is

evaluated faster on less data.
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Experiment ScikD | TrkD | TAMAR || TAMAR speed-up over KD
WebKB—IMDB 62.23 | 32.20 | 11.98 2.69
UW-CSE—~IMDB 62.23 | 38.09 | 15.21 2.50
UW-KB—IMDB 62.23 | 40.67 | 6.57 6.19
WebKB—UW-CSE | 1127.48| 720.02| 13.70 52.56
IMDB —UW-CSE | 1127.48| 440.21| 34.57 12.73

Average 488.33 | 254.24| 16.41 15.33

Table 3.4: Average (over all learning curve points) totairting time in minutes.

Experiment ScIKD TrKkD | TAMAR
WebKB—IMDB 7,558 10,673 | 1,946
UW-CSE—~IMDB 7,558 | 14,163 | 1,976
UW-KB—IMDB 7,558 | 15,118 | 1,613

WebKB—UW-CSE| 32,096 | 32,815 | 827
IMDB —-UW-CSE | 32,096 | 7,924 978
Average 17,373.2| 16,138.6| 1,468.0

Table 3.5: Average (over all learning curve points) numlkfecamdidate clauses
evaluated.

The complete learning curves are given in Appendlix 1. Herprgsent the
most interesting among them. Figlirel3.5 shows the learningedn the UW-CSE
— IMDB experiment. Here we additionally tested the perforoeaf systems that
do not useMmTAMAR but are provided with an intuitive hand-constructed magpin
that maps Student: Actor, Professor— Director, AdvisedBy/TempAdvisedBy-
WorkedFor, Publication~ Movie, Phase— Gender, and Positior> Genre. The
last two mappings are motivated by the observation thatdimadW-CSE applies
only to Student and Gender in IMDB applies only to Actor, amdikarly Position
and Genre apply only to Professor and Director respectivEhe systems using

the automatic mapping perform much better becau$eMAR maps each clause
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Learning Curves in IMDB Domain (Transfer from UW-CSE)

0.9

AUC

TrkD, Hand Mapping ====-=-=:
TAMAR, Hand Mapping -+
TrkD, Automatic Mapping
TAMAR, Automatic Mapping =====

2 3 4
Number of Mega Examples

Figure 3.5: Learning curves in UW-CSE IMDB for AUC. The zeroth points are
obtained by testing the MLN provided to the learner at the.sta

independently of the rest; i.e., the same source prediqgieasing in different
clauses may be mapped in different wayS.AMAR also has the ability to “erase” a
predicate from a clause by mapping it to the “empty” predi¢athe target domain.

This flexibility allows the source knowledge to adapt bettethe target domain.

3.3 SR2LR: When Target-Domain Data is Severely Limited

TAMAR assumes that at least one mega-example from the target mlomai
is available. In this section, we study the challenging a#dénited target data,
in which transfer learning could have the greatest impagctpdrticular, here we
assume minimal target-domain data that consists of jushdftibof entities, in the
extreme case just a single one. Figuré 3.6 contrasts therdrobdata assumed by

TAMAR to that assumed in this section.
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AdvisedBy
Publication

Figure 3.6: Target data assumed $§2L.R vs TAMAR. The nodes in this graph
represent the entities in the domain and the edges reprémerglations in which
these entities participate. AWAR assumes that the information from the entire
graph is providedsrR2LR assumes that just the bold relations are known.

This setting may arise in a variety of situations. For ins&arwhen a new
social networking site is launched, data is available oy ariew initial registrants.
The popularity of the site depends on its ability to make nregfal predictions that
would allow it to suggest promising friendships to userswideer, the sparsity of
available data and the fact that data from other social n&iwg sites is usually

proprietary make learning of an effective model from sdrandeasible.

Frequently, two domains differ in their representationg, the underlying
regularities that govern the dynamics in each domain ardasingo, when trans-
ferring a model learned from an academic data set to a mowméss domain,
one may discover that students and professors are simikcttws and directors
respectively, which makes writing an academic paper awai®tp directing or par-
ticipating in a movie. Likewise, because human interactiosar a certain degree of

similarity across settings, the social networking site leamn strong models from
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data on the professional relations among its employees apdtinem for the task

of interest based on its very limited supply of data from tbe site.

3.3.1 Thesr2LR Algorithm

When target data is so limited, effective transfer depemdthe ability to
map the representation of a source model learned in a closklied domain to
that of the target task. The main challenge addressed irségigon is, therefore,
to harness the small amount of data in the target domain iardadfind useful

mappings between the source and target representations.

We present an efficient algorithm for this tasi@2LR (which stands for
Short-Range To Long-Range) (Mihalkova & Mooney, 2009bgt ik based on the
observation that a good model for the source domain corttamtypes of clauses—
short-range ones that concern the properties of a singlky entd long-range ones
that relate the properties of several entities. Becaussldesnappings of the short-
range clauses to the target domain can be directly evalowatéioe available target
data, the key is to use the short-range clauses in order torfagpings between
the relations in the two domains, which are then used to lnshe long-range

clauses, thus boosting the performance of the model in tgettdomain.

Single-Entity Case: We first describe the algorithm for the extresiagle-entity-
centeredsetting, in which information about only one entity is aahie. Then we
generalize to more than one entity. More precisely, for nosvassume that the
data lists all true gliterals concerningcantral entity e, and only those gliterals.

Gliterals that involve: but are not listed are assumed to be false. Gliterals that do
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not involve e have unknown values. Thus, unlike in other sections, herane
making the closed-world assumptionly with respect to the central entity. Facts
that are not about the central entity are assumed to haveowmkmather than false,

truth values.

Mapped clauses that can be directly evaluated given a semdlg/-centered

example are short-range; the rest are long-range.

Definition 3.3.1. A clauseC is short-range with respect to an entity of typeiff
there exists a variablethat appears in every literal 6f andv represents arguments

of typet. A clause idong-rangewith respect ta¥ iff it is not short-range.

Example 3.3.1.As an example, suppose we would like to transfer the MLN in
Figure[3.7 using the data in Figure 3.8, i.e., transfer fromavie domain to an
academic domain. Let us consider one possible type-censistapping of the first
clause in Figuré_317, which is given in line 1.1 of Figlre] 3Mote that variable

A appears in both literals of this clause. Therefore, thesdas short-range. The
truth value of any grounding that uses the substitutior= bob can be directly
evaluated from the data. For example, if we ground this eastg the substitution

A = bob, B = ann, we obtain a ground clause whose literals are all known from

our data, thus the clause can be evaluated and hence, itrtsrahge.

Definition 3.3.2. A ground clause iwerifiable if it contains only gliterals with

known truth values.

Example 3.3.2.Continuing the example, if we use the substitutibe= ann, B =

bob, the resulting grounding cannot be directly evaluated bseshe truth-value of
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1/0.7 : WorkedFotA, B) = —Director(A)
2/0.8 : Credit§ M, A) A Creditg M, B) A Director B) = WorkedFo( A, B)

Figure 3.7: Source MLN

Student(bob), Publication(paperl, bob),
Publication(paper2, bob) , AdvisedBy(bob, ann)

Figure 3.8: Target domain data centered arobad. All listed atoms are true;
atoms aboubob that are not listed are false; the remaining atoms have wmkno
values.

Professor (ann) is unknown. We say that the earlier grounding/ésifiable,
whereas the second one is not. Now consider one possibleimgapithe second
clause in Figuré 317, given in line 2.1 of Figlrel3.9. Thisuskaconcerns relations
that go beyond just a single entity because it is about papgtten by other people

and is therefore long-range.

Algorithm 1 formally describesrR2LR. In line 1, the weight of a mapped
clause is set to the weight of the source clause from whiclagt mapped. Because
of limited target data, we do not attempt to re-learn weight® revise the mapped
clauseg! In line 3, the short-range mapped clauses are evaluatedsasilokd in
Algorithm 2, which checks whether the verifiable groundiofishort-range clauses
are satisfied in the target data. Clauses that are satisfieals#® proportion of the
time are accepted; the rest are rejected. This procedwmmatitally rejects clauses

that are not informative.

SMTAMAR also directly copies the weights.

62



1.1 | AdvisedBy(A, B) = —ProfessofA)
WorkedFor— AdvisedBY, Director — Professor
1.2 | AdvisedBy(A, B) = —StudentA)
WorkedFor— AdvisedBY, Director — Student
2.1 | PublicatioriM, A) A PublicatioiM, B)A
ProfessofB) = AdvisedBYy(A4, B)
WorkedFor— AdvisedBY, Director — Professor
Credits— Publication

2.2 | PublicatioiM, A) A Publicatio{M, B)A
StudentA) = AdvisedBY A, B)
WorkedFor— AdvisedBY, Director — Student
Credits— Publication

Figure 3.9: Example mapped clauses. The predicate comdsepoes used to map
each clause are listed under it.

Definition 3.3.3. A short-range clause imformative with respect to a single-
entity-centered example if it has a verifiable grounding Imch at least one gliteral

is false.

Intuitively, a clause is uninformative if, in every pos&le-writing of the
clause as an implication, the premises are never satisfiddathe clause is always

trivially true.

Example 3.3.3.For example, consider the clause Studdnt —~AdvisedBy( B, A),
which has two verifiable groundings corresponding to thessuhions A = bob,

B = ann, and A = bob, B = bob. It is not informative because all the literals in
its verifiable groundings are true. To develop intuition tlee significance of this,
consider one of the groundings: Studdnih) vV —AdvisedBy(ann, bob). We can re-

write it as—Studentbob) = —AdvisedByann, bob) or equivalently as AdvisedBy
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Algorithm 1 SR2LR algorithm

Input: SrcMLN: Source Markov logic network

Tg: Target data centered on the entiy
P: Set of predicates in the target domain
©: Truth threshold for accepting a short-range clause

Procedure:

1:

NoaR®

Generat&arMap, the set of all possible type-consistent mappings of thesela
in SrcMLN. Each mapped clause gets the weight of its correspondingeou
clause.

Split the clauses iTarMap into sets of short-range clausé&s,and long-range
clausesL.

8’ = filter-short-rangef, ©) (Algorithm 2)

Add all clauses fron®’ to Result

L' =filter-long-rangef , 8’) (Algorithm 3)

Add all clauses fronf.’ to Result

Let A¢ be the set of all clauses Result mapped from source claugéwith
weightwc.

Set the weight of each € A to we /| Ac.

(ann,bob) = Studentbob). In both cases, the premises of these clauses do not

hold, and thus the clauses cannot be used to draw inferdmaiesan be tested. So,

judgements about mappings based on such clauses are bkadymisleading.

Once the short-range clauses are evaluated, in line 5 ofithgo 1, SR2LR

evaluates the long-range ones, based on the mappings foleduseful for short-

range clauses. Along-range clause is accepted if all sdartarget predicate map-

pings implied by it either led to accepted short-range @ausupport by evalua-

tion) or were never considered by Algorithm @upport by exclusior). More pre-

cisely, letCs andC', be short-range and long-range mapped clauses respectively

If the set of source-to-target predicate correspondemeplad byC's is a subset of

those implied byC';, we say that the literals @f, that appear irt's aresupported
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Algorithm 2 filter-short-rangef, ©)
1. 8=10
2: foreachC € § do
3: if C isinformative and the proportion of verifiable grounding<’othat are
true is> O then
Add C'to &’
end if
end for
: Return8’

N o gk

Algorithm 3 filter-long-rangef, §')

1. L =0

2: foreach LR € £ do

3: if All literals in LR are supported either by evaluation based on the clauses

in 8 or by exclusiorthen

4 Add LRto L'
5 endif
6
7

: end for
: Returntl’

by evaluation. A correspondence between source predi€¢atand target predicate
Prissupported by exclusionwith respect to a set of mapped short-range clafises
if Ps andPr do not appear in any of the source-to-target predicate sjporedences
implied by the clauses ifi. The goal of support by exclusion is to allow for predi-
cates that do not appear in the short-range clauses to besghapithough support
by exclusion may seem too risky, i.e., if a pair of completatyelated source and
target predicates are mapped to each other, in our expertbedype consistency
constraint and the requirement that neither of the preelécatas mapped to any

other predicate were strong enough to safeguard agaisst thi

Example 3.3.4.We now illustrate Algorithm 1 up to line 7. Figure B.9 listsse
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mappings of the clauses in Figure13.7, along with the sotodearget predicate
correspondences implied by them. Clauses 1.1 and 1.2 doen(iative) short-
range, and 2.1 and 2.2 are long-range. ®et= 1. All verifiable groundings of
clause 1.1 are satisfied by the target data (given in Fig@e Jhus, this clause

is accepted and the predicate correspondences found leyusaful. Clause 1.2 is
rejected because not all of its verifiable groundings ariefgad by the target data.
Thus8’ contains only clause 1.1. Moving on to the long-range clause see that
predicatesAdvisedBy andProfessor in clause 2.1 are supported by clause
1.1; Publication is supported by exclusion, so clause 2.1 is accepted. Clause

2.2 is not accepted because there is no suppo&ticdent(B)

Finally, in lines 7-8 of Algorithm 1 the weight of each mappaduse)/
is divided by the number of mapped clauses that originate the same source
clause asV/- in order to ensure that none of the source clauses domirtetast

sulting model. In preliminary experiments this led to stigtbetter performance.

More Than One Entity: The generalization to more than one entity is easy. The
only difference is that now we hawesetof single-entity-centered training exam-
ples, and Algorithm 2 checks the validity of each short-eactause on each of
the examples, accepting a clause if it holds more tBaproportion of the time
over all examples. As more entities become known, some dbtigerange clauses
become directly verifiable. However, in preliminary expeents, we found that
directly evaluating long-range clauses in this way doessigniificantly help per-
formance, i.e., additional entities lead to improved aacymostly because they

allow for more reliable evaluation of the short-range césus
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Choice of Representation: The only characteristic of MLNs crucial ®R2LR is
that MLNs use first-order clauses that are interpreted irsthedard way for first-
order logic, i.e. by evaluating their truth values. Thisrgaal becauseR2LR also
interprets the clauses in the traditional wasR2LR would therefore be applica-
ble to any relational model that is based on a traditionarpretation of first-order
logic, such as purely logical representations that perlogital inference, stochas-
tic logic programs (SLPs) (Muggleton, 1996), andcCENT (Dehaspe, 1997). In
SLPs, knowledge is encoded as a set of Horn clauses withhattgarobabilities.
The probability that a particular ground atom is true is gllted by summing the
probabilities of all paths in an SLD-tv@(De Raedt, 2008) that lead to a successful
refutation, where the probability of a path is the producthaf probabilities of all
clauses that were used in this patbR2LR could also be applied to transferring
knowledge learned by theACCENT system|(Dehaspe, 1997), which is similar to
MLNSs in that it uses first-order clauses to define a maximumopgtdistribution
but, unlike MLNs, works only on independent examples andsisduto model a
conditional distribution. SR2LR would not be applicable to Bayesian logic pro-
grams (BLPs)(Kersting & De Raedt, 2001), which do not intetpheir clauses in
the standard way. Rather, each clause in a BLP encodes addggrof groundings
of the head on the corresponding groundings of the body. MhdN& properties
which, while not crucial tsR2LR, contribute to its effectiveness. In particular, the

ability of MLNs to handle uncertainty allowsR2LR to recover gracefully from an

“An SLD tree shows the steps taken in SLD resolution, a typegdi€hl inference that applies to
Horn clauses, in order to prove a given logical statementath p this tree represents one possible
sequence of steps that can be followed to prove the givesnséait.
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occasional incorrect predicate mapping: provided thattrobthe mapped clauses
are useful, the negative effect of a few misleading onesheilnitigated by the fact
that, when computing a probability distribution, MLNs cates the contribution of

all of the clauses in the model. This is not observed in puogical representations

in which a clause is used in isolation, and some of the clamsgsnever be used.

3.3.2 Experiments

We first describe methodology followed in the experimentsthien discuss

the empirical questions we asked and the results we obtained

Methodology: We comparedR2LR to MTAMAR and other baselines in the three
benchmark relational domains on social interactions tleaised to evaluateAMAR:
IMDB, UW-CSE, and WebKB. The IMDB and UW-CSE domains are vamnilar

in terms of the regularities between the relations in themihe actual representa-
tions they use differ. For example, in IMDB an actor and aaoeare usually in
aWorkedFor relationship if they appear in the credits of the same moAigal-
ogously, in UW-CSE a student and a professor are typicallgnidvisedBy
relationship if they appear in the author list of the samdipabon. Thus, an algo-
rithm capable of discovering effective mappings from thedicates of one domain
to those of the other, would be able to achieve good accurecyransfer. This
example also demonstrates why data centered around a smigle or a handful
of isolated entities, cannot support effective learnimagrfrscratch: one of the most

useful clauses for predictingdvisedBy involves knowledge about the publica-
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tions of twoconnecteentities, i.e., the advisor and the advisee. Although UVECS
may seem more closely related to WebKB than to IMDB, in facpWB does not
have a predicate analogousddvisedBy , which renders it much less useful for
transfer. Nevertheless, we include experimental resaltsamsfer from and to We-
bKB in order observe how the degree of relatedness betweesoilrce and target
domains affects the quality of transfer. We note that algfmcsome of the predicates
occur in more than one domain under the same name, the sydten® use the

actual predicate names.

Sources were learned wittusL (Mihalkova & Mooney, 2007), which, as
we demonstrate in Chapfer 4, gives good performance in tmaihs we considér.
We slightly modifiedBusL to encourage it to learn larger models by removing
the minWeight threshold and by treating the clauses learned for eachqgatedi
separately. This leads to models that are less accuratee inairce domain but
in some cases allow for more effective transfer, as we des@al/in preliminary
experiments (Mihalkova & Mooney, 2008). We call these medhrnedi. Ex-
perimental results of transferring from sources learneti e originalBusL are
shown in Sectioh 3.3.2.1. For transfer from UW-CSE, we alseduthe manually

coded knowledge base provided with that data set. We aalhitual.

As before, we report the results in terms of the area undeptéeision-

recall curve (AUC) and the conditional log-likelihood (CL.LWe report CLL for

8These sources were not used for the experimentswithAR becausausL had not yet been
developed at that time.

9Source MLNs are available frothttp://www.cs.utexas.edu/users/mi/mins/
under SR2LR.
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completeness; however, because we are unable to tune thbtsvef the MLN on
the limited target data, the CLL may be misleading. This cappen when the
predicted probabilities are correctly ordered, i.e., tyueund atoms have higher
probability than false ones (thus giving a high AUC), but ace close to 0 or 1
(thus giving a low CLL). At the same time, because of the largmber of true
negatives, the CLL can be boosted by predicting near O fayey®und atom; so
a model that predicts very low probabilities has a relagivegh CLL even when

these probabilities are incorrectly ordered.

We implementedsR2LR and the baselines as part of the Alchemy system
(Kok et al.,| 2005). © in Algorithm 1 was set to 1. Inference during testing was
performed on the mega-examples other than the one suppiginghg data, iterat-
ing over the available test examples. Within the same exygari, all systems used
the same sequence of training and testing examples. Therperfice of a given
predicate was evaluated by inferring probabilities fordadlits groundings, given
the truth values of all other predicates in the test meganpk@as evidence. While
training occurs on limited data, we test on a full mega-exXamphis is appropriate
because the final goal of transfer is to obtain a model thasgfective predictions
in the target domain as a whole and not just for an isolatetyeRbr inference, we
used the Alchemy implementation of MC-SAT (Poon & Doming@306) with the
default parameter settings. Statistical significance weasured via a paired t-test
at the95% level. As a final note, all systems we compared ran extrenfétyently

and found mappings in a few seconds on a standard workstation
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Overall Performance: The first set of experiments evaluates the relative accuracy
of SR2LR over all predicates in each domain in the most challengirsg esghen
only information about a single entity from the target dome available. We
formed single-entity-centered examples by randomly selgas the central entity
10% of the entities of type person from each mega-example dlaiia the target
domain. This resulted in 29 entities in IMDB, 58 in UW-CSEdd7 in WebKB.

We compared againstTAMAR and aScratch baseline that learns with no transfer

as follows.

Scratch Baseline:For every ordered pair of known atoms in the available data, a
clause is formed by having the first atom imply the second an@blizing consis-
tently. All clauses obtained in this way are assigned a wedfili. This baseline
generates a set of informative clauses that are true in tlem giata. If a clause has
groundings that are violated by the data, then our construgirocedure guaran-
tees that there will be another clause with the same weight wfhich draws the
opposite conclusion so that clauses that are not alwaysrtiine data cancel each
other in pairs during inference. Thus, this baseline canibsed as a variation of
SR2LR that transfers only the short-range clauses of a sourceltf@eontains of

all possible clauses of length 2.

Tabled 3.6 and 3.7 list the accuracies for every possibjetource pair in
terms of AUC and CLL respectively. Statistically signifitamprovement (degra-
dation) ovem TAMAR is indicated by & (), and significant improvement (degra-
dation) over Scratch is indicated by (). In terms of AUC, the more informative

measure, transfer between UW-CSE and IMDB is always beaktger learning
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Target Source MTAMAR | Scratch| SR2LR

IMDB UW-CSE-learned 0.327 0.276 | 0.4527 7
IMDB UW-CSE-manual 0.414 0.276 | 0.57771 /
IMDB WebKB-learned | 0.388 0.276 | 0.4687
UW-CSE | IMDB-learned 0.115 0.108 | 0.1887
UW-CSE | WebKB-learned | 0.199 0.108 | 0.174]
WebKB | IMDB-learned 0.164 0.287 | 0.1687
WebKB | UW-CSE-learned 0.297 0.287 | 0.295

WebKB | UW-CSE-manual 0.276 0.287 | 0.178]

Table 3.6: Average AUC over all target domain predicates.

Target Source MTAMAR | Scratch| SR2LR

IMDB UW-CSE-learned -1.692 | -4.575| -0.6827
IMDB UW-CSE-manual -0.433 -4.575| -0.502| ~
IMDB WebKB-learned | -0.728 -4.575|-0.872|
UW-CSE | IMDB-learned -2.057 -5.708 | -0.6067
UW-CSE | WebKB-learned | -1.191 -5.708 | -0.89171
WebKB | IMDB-learned -1.731 -3.440 | -0.69471
WebKB | UW-CSE-learned -1.221 -3.440 | -0.6437
WebKB | UW-CSE-manual -0.561 | -3.440 | -0.873] ~

Table 3.7: Average CLL over all target domain predicates.

from scratch, andR2LR always has a significant advantage oMefAMAR. AsS

expected, transfer to or from WebKB and the other two domiagiads to less con-
sistent gains and, in some cases, degradaS®dLR is competitive also in terms
of CLL, although in some cases, as discussed earlier, a nttwatagives significant

advantages in AUC is at a disadvantage in CLL.

Focus on Specific Predicates: We have shown that, over all predicates in a do-

main, SR2LR can lead to significant gains in accuracy. Next, we study @atgr
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detail the performance on thWWorkedFor predicate in IMDB andAdvisedBy

in UW-CSE, which, as argued earlier, require more data tedeked from scratch,
and are best predicted by long-range clauses. The choide\a$edBy as the
predicate to study in more detail is also motivated by thetfeat it has been treated
as the target predicate by several authors (e.g., Davis @08l7; Biba et all, 2008;
Singla & Domingos/ 2008). We picked/orkedFor because it corresponds to

AdvisedBy in the IMDB domain.

We used the single-entity-centered instances from ourrerpats for the

overall performance and introduced an additional bas&limeall SR-Only.

SR-Only Baseline:UsessR2LR to transfer only the short-range clauses, ignoring
the long-range ones. This baseline is used to verify thasfearing the long-range

clauses is beneficial.

Statistically significant improvement (degradationse2LR over SR-Only
is indicated by &) ({}). As shown in Tablé 3]8, when transferring to IMDB from
UW-CSE,sR2LR significantly outperforms all other methodsR2LR also leads to
significant gains in transfer from IMDB to UW-CSE, althoughthis casesR2LR
is significantly better than SR-Only just on CLL, equalirgperformance on AUC.
Transferring from IMDB to UW-CSE is less beneficial than gpin the opposite
direction, from UW-CSE to IMDB, because several predicaiddW-CSE do not
have analogs in IMDB while most of IMDB'’s predicates have dcheng predicate
in UW-CSE. As before, transfer from the more distantly redatWebKB domain

produces mixed results.
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Source MTAMAR | SR-only | Scratch| sSR2LR
UW-CSE-manual 0.726 0.339 | 0.032 | 0.98271 ¢+ ~
UW-CSE-learned 0.024 0.215 |0.032 | 0.2397T ¢
WebKB-learned | 0.025 0.023 | 0.032 | 0.023]

Source MTAMAR | SR-only | Scratch| SR2LR

IMDB-learned | 0.010 0.030 | 0.008 |0.03071
WebKB-learned 0.007 0.007 | 0.008 | 0.007,

Table 3.8: AUC forWorkedFor in IMDB (top) andAdvisedBy in UW-CSE
(bottom).

Source MTAMAR | SR-only | Scratch| SR2LR
UW-CSE-manual -0.084 -0.066 | -6.488 | -0.0377
UW-CSE-learned -0.385 | -0.695 | -6.488 | -0.727| ||
WebKB-learned | -0.728 -0.700 | -6.488 | -0.7007 ~
Source MTAMAR | SR-only | Scratch| SR2LR
IMDB-learned | -1.767 -0.295 | -5.542 | -0.2807 ¢+
WebKB-learned -0.757 -0.696 | -5.542 | -0.6967

Table 3.9: CLL forWorkedFor in IMDB (top) and AdvisedBy in UW-CSE
(bottom).

Increasing Numbers of Entities: In our final set of experiments, we compared
the accuracy o6R2LR versus that oM TAMAR onWorkedFor andAdvisedBy ,

as information about more entities becomes available. Tthido we considered
5 distinct orderings of the constants of type person in eaehgavexample, and
provided the first to the systems, with ranging from 2 to 40 in IMDB, where the
smallest mega-example has 44 constants of type person@nd2fto 50 in UW-
CSE, where the smallest mega-example has 56 such condiauis.point on the

curves is the average over all training instances with tratytknown entities. The

results in terms of AUC are shown in Figlire 3.10. As can be,sskh R maintains
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its effectiveness even as more data becomes availableriSagty, in UW-CSE
MTAMAR's performance actually decreases as more entities becamenk We
conjecture that this is due to the fact that whersg®LR keeps all mappings that
are supported by the dataTAMAR picks the best mapping in terms of WPLL score
for each source clause. As more entities become known, #inera larger number
of possible relations among them. If the known entities @aseahnected, however,
MTAMAR does not observe many instances in which mappings of thermge
clauses are helpful and therefore rejects them in favor qipimgs that produce
short-range clauses (by mapping source predicates to thety target predicate),
for which there is growing supportsrR2LR is not susceptible to this because it
treats long-range and short-range clauses separately.effact is not observed in
the smaller IMDB domain where randomly chosen entities anehmiess likely to

be disconnected.

This last set of experiments raises the interesting pointah, if at all, one
should switch fromsrR2LR to MTAMAR, as the number of known entities grows.
Our experiments provide indirect evidence that in somescaseight be better to

use a simpler, less discriminating, measure to evaluatnpat clause mappings.

3.3.2.1 Using Sources Learned with OriginaBusL

Finally, we would like to compare the performancess?LR using source
MLNs learned with the originaBusL to its performance using the sources from
our main experiments. Tablés 3/10 dnd B.11 present a cosopabietween the

performance o6R2LR from sources learned with the originglsL algorithm to
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Figure 3.10: Accuracy on increasing amounts of data\workedFor (left) and
AdvisedBy (right).

those learned with the slightly modified versionmfsL used in Section 3.3.2.
Tabled 3.1P and 3.13 show the performance onXoekedFor andAdvisedBy
predicates respectively. As can be seen, in some casesuites learned with the
slightly modifiedBusL, which perform worse than those of the origiralsL in

the source domain, sometimes give better results when oséghsfer.

Target Source | SR2LR (modifiedBUSL) | SR2LR (original BUSL)

IMDB | UW-CSE 0.452 0.428

IMDB WebKB 0.468 0.503
UW-CSE| IMDB 0.188 0.160
UW-CSE| WebKb 0.174 0.228
WebKb | IMDB 0.168 0.168
WebKb | UW-CSE 0.295 0.167

Table 3.10: Comparison in terms of AUC between the perforeafisrR2LR from
sources learned with the modified versus origsas$L.
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Target Source | SR2LR (modifiedBUSL) | SR2LR (original BUSL)

IMDB UW-CSE -0.682 -0.816

IMDB WebKB -0.872 -0.609
UW-CSE| IMDB -0.606 -0.839
UW-CSE| WebKb -0.891 -0.618
WebKb | IMDB -0.694 -0.693
WebKb | UW-CSE -0.643 -1.687

Table 3.11: Comparison in terms of CLL between the perfoceaisr2LR from
sources learned with the modified versus origsas$L.

Target Source | SR2LR (modifiedBUSL) | SR2LR (original BUSL)

IMDB | UW-CSE 0.239 0.028

IMDB WebKb 0.023 0.026
UW-CSE| IMDB 0.030 0.035
UW-CSE| WebKb 0.007 0.008

Table 3.12: Comparison in terms of AUC between the perfonearisrR2LR from
sources learned with the modified versus origgasL on theAdvisedBy predi-
cate in UW-CSE an@lVorkedFor predicate in IMDB.

3.4 Summary

In this chapter, we presented two algorithms for transfeMbN structure.
The first oneRTAMAR, revises an MLN learned in a source domain and mapped to
the predicates of the target domain in the case when a stilastmnount of target-
domain data is provided. The second algoritt8R2LR, addresses the scenario
when target-domain data is severely limited. Our experisidemonstrated that

both of these algorithms lead to benefits in the accuracyoasgeed of learning.
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Target Source | SR2LR (modifiedBUSL) | SR2LR (original BUSL)

IMDB | UW-CSE -0.727 -0.500

IMDB WebKb -0.700 -0.688
UW-CSE| IMDB -0.280 -0.586
UW-CSE| WebKb -0.696 -0.688

Table 3.13: Comparison in terms of CLL between the perfoceaisr2LR from
sources learned with the modified versus origgasL on theAdvisedBy predi-
cate in UW-CSE an@lVorkedFor predicate in IMDB.
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Chapter 4

MLN Structure Learning from Scratch

In Chaptei B we presented algorithms for improving learrohgn MLN
via transfer of a model from a related source domain. In thegpter, we present
a novel algorithm that aims at improving MLN structure leaghfrom scratch by
approaching the problem in a more bottom-up way. We call lgarahmsusL for

Bottom-Up Structure Learning (Mihalkova & Mooney, 2007).

4.1 BuUSL Overview

As pointed out by Richardson and Domingos (2006), MLNs ses/é&m-
plates for constructing Markov networks when differenssat constants are pro-
vided. Because the cliques of the ground Markov network afened by the
groundings of the same set of first-order clauses, the grepbits a high degree
of redundancy where the same pattern is repeated seveed, toarresponding to

each grounding of a particular clause.

Example 4.1.1.Considering Figure 214 (pagel29) again, we observe thatterp
of nodes and edges appearing above the@nedits gliterals is repeated below
them with different constants. In fact, this Markov netwadn be viewed as an

instantiation of the template shown in Figlrel4.1.
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Director(A)
WorkedFor(A,A) WorkedFor(A, B)

Credits(C,A) Credits(C, B)

Figure 4.1: Example Markov Network Template

The basic idea behindusL is to learn MLN structure by first creating a
Markov network template similar to the one shown in Figuifdom the provided
data. The nodes in this template are used as components frnich wlauses are
constructed, and can contain one or more Vliterals that @meected by a shared
variable. We will call these nodeBNodesfor template nodes. As in ordinary
Markov networks, a TNode is independent of all other TNodesrgits immedi-
ate neighbors. Recall from Sectibn 213.1, that the HammeSlifford Theorem
guarantees that we can specify any probability distrilbut@mpliant with the con-
ditional independencies implied by a particular graph bipgisunctions defined
only over the cliques of the graph. In the case of MLNs wheegeftimctions are
expressed as first-order logic rules, this implies thataorehe structure, the algo-
rithm only needs to consider clause candidates that complythe Markov net-
work template. In other wordgusL uses the Markov network template to restrict
the search space for clauses only to those candidates whersés|correspond to

TNodes that form a clique in the template.
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Algorithm 4 Skeleton ofBusL

foreach P € P do
Construct TNodes for predicafe (Sectiorf4.2.11)
Connect the TNodes to form a Markov network template (Seétid.2)
Create candidate clauses, using this template to congtraisearch (Sec-
tion[4.2.3)

end for

Remove duplicate candidates

Evaluate candidates using WPLL and add best ones to final MLN

The approach taken bgusL follows the same philosophy as the graph-
centric learners discussed in Section 2.3.2 where the iligoffirst focuses on
learning the conditional independencies among the vasabéfore specifying the
features that define the probability distribution. Thisnsstark contrast t«D,
which takes a feature-centric approach and proceeds bstiglitearning the clauses

of the MLN.

Algorithm 4 gives the complete skeleton®fisL. Letting P be the set of
all predicates in the domain, the algorithm considers eaetiipateP < P in turn.
A Markov network template isutomaticallyconstructed from the perspective of
the current target predicafe. Template construction involves creating variablized
TNodes, or components for clause construction, and detergihe edges between
them. Even though the template aids the search for clauskss not carry all the
information about the MLN. Namely, it does not specify wheatthe vliterals par-
ticipating in a clause are positive or negative, or pregigdiat clauses correspond
to a given clique. For example, a three-node clique couldespond to one three-

literal clause or to three two-literal clauses, etc. Infatibn about the weights is

81



also excluded. To search for actual clauses, we generatsectandidates by fo-
cusing on each maximal clique in turn and producing all gesilauses consistent
with it. More specifically, these are all possible clauseteafjith 1 tocliqueSize
containing only members of the clique. We can then evaluath eandidate using
the WPLL scorel(Kok & Domingos, 2005) (described on gage Bilthe following

section we give the details of each step.

4.2 BUSL Details

A Markov network template is created for each predicate endbmain in
order to ensure that the relationships of all predicatepiemgerly modeled. Below,

we describe the process for the current target prediéate

4.2.1 TNode Construction

TNodes contain conjunctions of one or more vliterals andesas build-
ing blocks for creating clauses. Intuitively, TNodes arastaucted by looking for
groups of constant-sharing gliterals that are true in tha dad variablizing them.
Thus, TNodes could also be viewed as portions of clauseb#vattrue groundings
in the data. The process of TNode construction is inspirectlayional pathfinding
(Richards & Mooney, 1992), which we described in Section®.ZThe result of
running TNode construction fa? is the set of TNodes and a matriX, containing
a column for each of the created TNodes and a row for eachrajlioé P. Each
entry Mp[r][c] is a Boolean value that indicates whether the data contatnsea

grounding of the TNode corresponding to columwith at least one of the con-
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stants of the gliteral corresponding to rew This matrix is used later to find the
edges between the TNodes. Algorithm 5 describes how the 3 ades and the

matrix Mp are constructed. The algorithm uses the following defingio

Definition 4.2.1. Two gliterals areconnectedf there exists a constant that is an
argument of both of them. Similarly, two vliterals are cocteel if there exists a

variable that is an argument of both of them.

Definition 4.2.2. A chain of literals of lengthl is a list of [ literals such that for
1 < k < [ thekth literal is connected to thg: — 1)th via a previously unshared

variable.

First, in line 1 the algorithm createsheead TNode that consists of a vlit-
eral of P in which each argument is assigned a unique variable. Thisd€Ns
analogous to the head in a definite clause; however, notetimatlgorithm is not
limited to constructing only definite clauses. Next, in Brito 22 the algorithm
considers each gliter@ » of P in turn. This includes both the true and the false
gliterals of P, where the true gliterals are those stated to hold in the ddige the
rest are assumed to be false. A row of zeros is addédtdor G p, and the value
corresponding to the head TNode is set to & i is true and to O otherwise (lines
4-7). The algorithm then proceeds to consider th&getof all true gliterals in the
data that are connected®-. For each: € C¢,,, it constructs each possible TNode
based om containing 1 tan vliterals. If a particular TNode was previously created,
its value in the row corresponding @y is set to 1. Otherwise, a new column of

zeros is added td/p and the entry in thé& p row is set to 1 (lines 13-19). Thus,
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Algorithm 5 Construct TNode Set
Input: P: Predicate currently under consideration
m: Maximum number of vliterals in a TNode
Output: TNodeVector: Vector of constructed TNodes
Mp: Matrix of Boolean values
Procedure:
1: Make head TNode&eadTN, and place it in position O dfNodeVector
2: for each (true or false) gliteralGp, of P do
3: Add arow of zeros tolp

4. currRowIndex = numRows$My) — 1
5. if Gp is truethen
6: SetMp[currRowIndex|[0] = 1
7. endif
8: LetCg, be the set of true gliterals connectedito
9: foreachc € Cg, do
10: for each possible TNode of length 1 tobased ort do
11: size = current length
12: newINode = CreateTNode(c, Gp, headTN, size) (Algorithm 6)
13: position = TNodeVector.find(newTNode)
14: if position is not foundthen
15: appenchewTNode to end ofTNodeVector
16: append a column of zeros I
17: position = numColumns(Mp) — 1
18: end if
19: SetMp [currRowIndex|[position| =1
20: end for
21:  end for
22: end for

each entry inV/p indicates whether the TNode corresponding to its colummdcou

be formed when considering the gliteral correspondingstoaitv.

Algorithm 6 shows the&reateTNode procedure. In line 1, the algorithm
variablizes the current gliteralconnected t@- » by replacing the constantshares

with G p with their corresponding variables from the head TNodehdfTNode size
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Algorithm 6 CreateTNode

Input: Gp: Current gliteral of> under consideration
c: Gliteral connected t@, on which this TNode is based
headTN: Head TNode
size: Number of vliterals in the TNode

Output: newTNode: The constructed TNode

Procedure:

1: v = variablizec such that the constants shared withare replaced with their
corresponding variables froimeadTN and all others are replaced with unique
variables
CreatenewTNode containingv
previousGliteral =c
lastVliteralInChain =v
while length(newTNode) < size do

c,; = pick true gliteral connected tpreviousGliteral via a previously
unshared constant

7. vy =variablizec, such that constants shared withor previousGliteral

are replaced with their corresponding variables frameadTN or
lastVliteralInChain and all others are replaced with unique variables

8: Addv; tonewTNode

9: previousGliteral = ¢4
10: lastVliteralInChain = vy
11: end while

o gk wnN

is greater than 1, the algorithm enters the while loop indifel 1. In each iteration
of this loop we extend the TNode with an additional vlitetattis constructed by
variablizing a gliteral connected to the gliteral consatem the previous iteration
so that any constants shared with the head TNode or with thaqus gliteral are

replaced with their corresponding variables.

Example 4.2.1.Suppose that for our example domain, we are given the daabas
in Figure[4.2. LetP = Actor andm = 2 (i.e. at most 2 vliterals per TNode). The
head TNode ié\ctor(A) . Figures 4.B and 4.4 show the gliteral chains considered
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Actor(brando) Director(coppola)
WorkedFor(brando, coppola)
Credits(godFather, coppola) Credits(godFather, brando)

Figure 4.2: Database used in Exaniple 4.2.1. The listed-alétaretrue ; the rest

arefalse
A coppola )
brando odFather
......................... Y T

Figure 4.3: An illustration of the chains considered whenstaucting TNodes
for Actor(brando) , which is a true gliteral. The solid edges show existing
relations between the constants. The dashed edges indatate where each path
is numbered. Paths 1 and 2 have length one, and paths 3 ané #ehgth two.

true

in the main loop (lines 2-22) of Algorithm 5 for each glitecd! P.

Let us first focus on the case whé#y is Actor(brando) shown in
Figure[4.8. Connections 1 and 2 lead to the TNodéwkedFor(A, B) and
Credits(C, A) respectively. Connection 3, froforando to coppola via
theWorkedFor edge and then tgodFather viatheCredits edge, givesrise
to the 2-vliteral TNodgWorkedFor(A, D), Credits(E, D)] . Connec-
tion 4, which goes fronbrando to coppola via godFather , motivates the
TNode[Credits(F, A), Credits(F, G)] . The following table lists the

values inMp at this point.
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Actor(A) | WorkedFor(A, B)| Credits(C, A)| WorkedFor(A, D)| Credits(F, A)
Credits(E, D) | Credits(F, G)
1 1 1 1 1

Note that when constructing the TNodes, we replaced shamstants with
the same variables, and constants shared @/jttwith the corresponding variable

from the head TNode.

We did not consider the chaj@redits(godFather, brando) :
WorkedFor(brando, coppola)] . This chain is invalid because the shared
constantbrando , has been shared previously (with the head TNode). We can use
this example of an invalid chain to provide some intuitionttee requirement that
a chain can be extended only by sharing a previously unsltarestant. Suppose

that this restriction did not exist. Then we would form theoké

[Credits(X1,A), WorkedFor(A, X2)]

However, we notice that the vliterals composing this new d®&are present,
modulo variable renaming, in two separate TNodes foundegdthe second and
third TNodes in the table above). Therefore, constructing TNode has the ef-
fect of producing two-vliteral TNodes consisting of vliads that already appear in

single-vliteral TNodes.

Next, we consider Figurle 4.4 that deals with the secondtiteran which
G p is Actor(coppola) . Based on connection 5, we construct a new TNode

Director(A) and from connection 6 the TNod&orkedFor(H, A) , which
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Figure 4.4: An illustration of the chains considered whenstaicting TNodes
for Actor(coppola) , Which is a false gliteral. The solid edges show existing
relations between the constants. The dashed edges indatate where each path
is numbered. Paths 5, 6, and 7 have length one, and paths 8rave $ength two.

Actor(A) WkdFor(A, B) [Credits(C, Director(A) |WkdFor(D, A) WkdFor(A, E), [Credits(G, A), WkdFor(l, A),
Af ’W Credits(F, E) |Credits(G, Hi Credits(J, 1)

1 1 1 0 0 1 1 0

0 ‘ 0 ‘ 1 ‘ 1 ‘ 1 ‘ 0 ‘ 1 ‘ 1

Table 4.1: Final set of TNodes and their correspondifigmatrix

differs from theWorkedFor TNode found earlier by the position of the vari-
able A shared with the head TNode. An appropriate TNode fomeotion 7
(Credits(C,A) ) already exists. Connection 8 gives rise to the two-vlitéhd
ode [WorkedFor(l, A), Credits(J, )] . A TNode for connection 9,
[Credits(F, A), Credits(F, G)] was constructed in the previous itera-

tion. Table 4.1 lists the final set of TNodes.

If TNodes are restricted to consist of only a single vlitegbsL would
construct only clauses whose literals all contain a shase@de (the one shared

with the head TNode). Such clauses can be viewed as revadvmgnd a single
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entity, represented by the shared variable. Because TNuafdesagth 2 introduce
paths based on shared variables that do not appear in thelheat, when such
TNodes are allowe@dusL can construct clauses that extend beyond the relations of
a single entity. In general, larger valuesrofmean longer TNodes that could help
build more informative clauses. However, a largealso leads to the construction
of more TNodes, thus increasing the search space for clagessed a conserva-
tive setting ofm = 2. Note that this does not limit the final clause lengtl2tdlo
further reduce the search space, we require that TNodesmnaith than one vliteral
contain at most one free variable (i.e. a variable that do¢gappear in more than
one of the vliterals in the TNode or in the head TNode). We ditlexperiment
with more liberal settings of these parameters but, as queraxents demonstrate,

these values worked well in our domains.

TNode construction is very much in the spirit of bottom-uarteéng. Rather
than producing all possible vliterals that share variabl@gh one another in all
possible ways, the algorithm focuses only on vliterals fdnich there is a true
gliteral in the data. Thus, the data already guides and rnstthe algorithm.
This is related to bottom-up ILP techniques such as leastrgd generalizations
(LGG) and inverse resolution (Lavrac & DZeroski, 1994 pwéver, as opposed to
LGG, our TNode construction algorithm always uses the gdization that leads
to completely variablized TNodes and unlike inverse retsay the process does
not lead to the creation of complete clauses and does notnydegical inference

algorithms like resolution.

The procedure for constructing TNodes is also very simiaretiational
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pathfinding (RPF) (Richards & Mooney, 1992), described ayedl/. Like RPF, it
is based on searching for paths in the relational graph od&te However, unlike
RPF, these paths do not attempt to connect the constantslibéralgof the target
predicate. Whereas in RPF the goal is to discover ways ofipgdwue instances of
the target predicate, the goal of TNode construction isgoalier features that can

be effective clause building blocks.

4.2.2 Adding the Edges

Once TNodes are constructed, we can search through the spatpossi-
ble clauses composed from them. This search space is alsezlier than the one
considered byD because the algorithm uses only combinations of vlitefzds t
contain at least one true grounding in the data. Nevertbgles number of possi-
ble clauses may still be prohibitively large. Moreover, &dssed in Sectidn 4.1,
an exhaustive search is not necessary. Thus we proceed meterthe template
construction, by finding which TNodes are connected by edges this purpose,
it is useful to recall that the templates represent vaizablianalogs of Markov
networks. Finding the edges can therefore be cast as a Madtaxork structure
learning problem where the TNodes are the nodes in the Markbvork and the
matrix Mp provides training data. At this point, any Markov networkreing al-
gorithm can be employed. We chose the Grow-Shrink Markowidgt (GSMN)
algorithm by Bromberg et al. (2006), which we described intBal2.3.2, because
it is simple but effective. Our choice was also motivated thy tact that GSMN

takes a graph-centric approach to the problem, which mdetsttlearns just the
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structure of the Markov network, without any weights, whare unnecessary in

our case.

4.2.3 Search for Clauses

Because the clauses in an MLN define functions over the diguehe
ground MLN, we should only construct clauses from TNodeg foam cliques
in the Markov network template. In other words, any two TNeg@articipating
together in a clause must be connected by an edge in the tiemple head TNode
is required to participate in every candidate. Each claasecontain at most one
multiple-literal TNode and at most one TNode that contairsngle non-unary
literal. These further restrictions on the clause cand&lare designed to decrease
the number of free variables in a clause, thus decreasingitieeof the ground
MLN during inference, and further reducing the search sp@oenplying with the
above restrictions, we consider each clique in which thel Hddode participates
and construct all possible clauses whose length is lesghieasize of the clique by
forming disjunctions from the literals of the participagimNodes with all possible

negation/non-negation combinations.

After template creation and clause candidate generat®caried out for
each predicate in the domain, duplicates are removed anchtitidates are eval-
uated using the WPLL score (Kok & Domingos, 2005), describegage 31. Re-
call that in order to compute this score, one needs to assigright to each clause.
Weight learning is performed using L-BFGS, also used by &idson and Domingos

(2006) and also used kD. After all candidates are scored, they are considered for
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addition to the MLN in order of decreasing score. To reducerfitting and speed
up inference, only candidates with weight greater thmnWeightare considered.
Candidates that do not increase the overall WPLL of the atigréearned MLN are

discarded.

4.3 Experimental Setup

We compared the performance BsL to that of KD in the same three
relational domains—IMDB, UW-CSE, and WebKB—that we ddsed in Sec-
tion[3.2.2. It is important to note that our results on the W®E dataset are not
comparable to those presented by Kok and Domingos (200%usecdue to pri-
vacy issues we only had access to the published versionsod#ta, which differs

from the original (Personal communication by Stanley Kok).

As in Chaptei B, we measured the performance in terms of thé Akd
CLL and generated learning curves using a leave-1-megayaraout approach.
The parameter settings for runnirg@ from scratch were identical. As before, all
timing runs within the same experiment were carried out ersdime dedicated ma-
chine. We implementedusL as part of the Alchemy package (Kok et al., 2005).
We setBusL's minWeight = 0.5 for all experiments and observed that the op-
eration of the algorithm is not very sensitive to other sgti of this parameter.
Even though botBusL andkD have a parameter calledinlVeight, they use it
in different ways and the same value is therefore not neagssatimal for both
systems. The-value for they? test used by GSMN was set 685 and was not

further optimized.
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4.4 Experimental Results

Figured 4.5-4]7 show learning curves in the three doma@uasL improves

over the performance & in all cases except for one point in terms of AUC.

Figure[4.6 additionally plots the AUC and CLL for a systemttharforms
weight learning over the knowledge base provided as patieofW-CSE dataset
(Hand-KB). Hand-KB was generated by asking volunteers fivess in first-order
logic general knowledge about academia (Richardson, 200¥jerms of AUC,
this system’s performance is significantly worse than thatsL, and in terms of

CLL, it performs as well agusL.

In Figurel4.7, we observe that even thowghis improving its performance
in terms of AUC, its CLL score decreases. This is most propbdibk to the ex-
tremely small relative number of true gliterals in the domiaiwhich the CLL can

be increased by simply predictiriglse for each query.

Another observation that requires explanation is that éaeners improve
by only tiny amounts, if at all, after the first point on thereiag curve. This oc-
curs because in our experience, for both learners, addltdata improves only the
WPLL estimate (and thus the evaluation of new clause cateBjidout does not
have a great effect on the clauses that are proposed. leydartiinBusL candi-
dates are based on the dependencies among the TNodes, addtaewtroduces

few new such dependencies. This, however, may not be thercatieer domains.

Figured 4.8-4]7 give an idea of how the learners perform all¢he pred-

icates of the domain. It is also interesting, however, toteegerformance of the
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Predicates | CLL BusL CLL kD | AUCBuUSL | AUC KD
director -0.24+0.12| -1.44+0.12 | 0.914+0.03 | 0.51+0.01
actor -0.01+0.00| -0.59+0.08 | 1.00+0.00 | 0.88+0.01
movie -1.66+0.17| -2.42+0.25| 0.27+0.00 | 0.19+0.00
gender -0.69+0.05| -3.33+0.33 | 0.48+0.01 | 0.36+0.00
workedUnder| -0.074-0.00 | -0.24+0.02 | 0.26+0.00 | 0.10+0.00

genre -0.18+0.05| -1.10+:0.04 | 0.60+0.05 | 0.34+0.02
samePerson| -0.03+0.00 | -0.03+0.01| 1.00+0.00 | 0.89+-0.01
sameMovie | -0.04+-0.00| -0.11+0.03| 1.00+0.00 | 0.99+0.00
sameGenre | -0.05+0.00| -0.44+0.23 | 0.80+0.00 | 0.63+0.04
sameGender -0.04+0.00| -0.14+0.07 | 1.00+0.00 | 0.99+0.01

Table 4.2: Per-predicate results from last point on legyeurve in IMDB

systems for each predicate in the domains individually.|&&8.2-4.4 show these
results for AUC and CLL for the last point on the learning @svNote that the per-
formance for some of the predicates, sucifasghtBy in UW-CSE is extremely
low. This is due to the fact that, given the information po®d during testing, it is

impossible to reliably predict the value of these predisate

Table[4.5 shows the average training time over all learnings rfor each
system, and the average number of candidate clauses eaaérleanstructed and
evaluated over all runs. As can be seBnsL constructed fewer candidates and
trained much faster thakbp. BUSL spends the main portion of its training time
on computing the WPLL score of the generated candidatess fiuicess takes
longer in domains like WebKB that contain a great number ofstants. On the
other hand, we expeetusL’s savings in terms of number of generated candidates
to be greater in domains, such as UW-CSE, that contain madigates because

the large number of predicates increases the number of datedclauses gener-
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Predicates CLL BUSL CLL kD | AUCBUSL | AUCKD
taughtBy -0.02£0.00 | -0.03+0.00| 0.01£0.00 | 0.00+0.00
courseLevel | -0.82+0.08| -2.95+0.37 | 0.48+0.03 | 0.28+0.01
position -0.16+0.03 | -1.33+0.08 | 0.33+0.03 | 0.09+0.02
advisedBy | -0.04+0.01 | -0.12+0.01| 0.02+0.00 | 0.00+0.00
projectMember| -0.02+:0.00 | -0.01+-0.01| 0.00+0.00 | 0.00+0.00
phase -0.35+0.03 | -0.75+0.13 | 0.32+:0.01 | 0.26+0.01
tempAdvisedBy| -0.02+0.00 | -0.09+0.01 | 0.01+0.00 | 0.00+0.00
yearsinProgram -0.22+0.04 | -0.374+-0.04 | 0.16+0.02 | 0.10+0.01
tA -0.03+0.00| -0.02+0.00| 0.00+0.00 | 0.00+0.00
student -0.06+£0.02 | -1.58+0.10| 1.00+0.00 | 0.59+0.03
professor -0.0740.05| -1.51+0.08 | 0.98+0.01 | 0.16+0.03
samePerson | -0.03£0.00 | -0.06+0.01| 1.00+0.00 | 0.79+0.00
sameCourse | -0.04+0.00| -0.29+0.06| 1.00+0.00 | 0.41+0.00
sameProject | -0.04+0.00| -0.38+0.11| 1.00+0.00 | 0.60+0.00
publication -0.18+£0.02 | -0.20+0.02 | 0.10+0.01 | 0.05+0.00

Table 4.3: Per-predicate results from last point on legroirve in UW-CSE

ated bykD. These considerations explain why the smallest improvémespeed
is achieved in WebKB that contains the least number of pegdé&cand the great-
est number of constants. The greatest speed-up is in IMDBenhesL created
the smallest number of candidates, and each candidate lbewddaluated quickly

because of the small number of constants in this domain.

Based on the much smaller number of candidate clauses evedidy
BUSL, one might expect a larger speed-up. Such a speed-up is setvelnl be-
cause of optimizations within Alchemy that allow fast sogrof clauses for a fixed
structure of the MLN. BecauseD evaluates a large number of candidates with a
fixed structure, it can take advantage of these optimizatiddn the other hand,

after initially scoring all candidategusL attempts to add them in decreasing or-
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Predicate | CLL BusL CLL kD | AUCBuUSL | AUCKD
student | -0.01+0.00| -0.81+0.09| 1.00+0.00 | 0.93+0.00
samePerson-0.02£0.00 | -0.01+0.00| 0.99+0.00 | 0.88+0.01
faculty -0.02+0.00| -2.78+0.13| 1.00+0.00 | 0.56+0.00
project -0.13+0.01 | -0.17+0.02 | 0.03+0.00 | 0.02+0.00
courseTA | -0.03+0.00| -0.03+0.00| 0.01£0.00 | 0.01£0.00
courseProf| -0.03+0.00| -0.04+0.01| 0.02+0.00 | 0.01+0.00

Table 4.4: Per-predicate results from last point on legyeiurve in WebKB

Training time # candidates
Dataset | BUSL KD Speed-up| BUSL | KD
IMDB 459 | 62.23 13.56 162 | 7558
UW-CSE | 280.31| 1127.48| 4.02 340 | 32096
WebKB | 272.16| 772.09 2.84 341 | 4643

Table 4.5: Average training time in minutes, average spgethctor, and average
number of candidates considered by each learner.

der of score to the MLN, thus changing the MLN at almost eaep,sthich slows

down the scoring of the structure.

Finally, we checked the importance of adding the edges itied.2.2.
This step can, in principle, be avoided by simply producinfuléy connected
Markov network template. Recall that the goal of this stefoidecrease the num-
ber of vliterals that could participate together in a claube Table[4.6 we show
statistics on the number of TNodes constructed by the dlgorin each of the do-
mains, as well as the proportion of TNodes that end up in thekablanket of
the head TNode. As can be seen, the number of neighbors oé#tETiNode in the

Markov network template is dramatically smaller than thaltaumber of TNodes
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Data set IMDBUW-CSEWebKB
Average number of TNodes constructed 31.44 70.70 | 18.83
Average proportion of TNodes in MB of head TNo@el2| 0.14 | 0.22
Maximum number of TNodes constructed 56 144 28
Maximum size of MB of head TNode 17 41 15

Table 4.6: Statistics on the average number of TNodes aartstt, the average
proportion of TNodes that appear in the Markov blanket oftiead TNode, the
maximum number of TNodes constructed, and the maximum Marlanket size,
over the predicates in all learning runs in each domain.

discovered. This naturally leads to a smaller number of ickatel clauses that need

to be considered.

As mentioned in Sectioh 2.4.2 (paQel 31), at the time of wgitai this
manuscript, Kok and Domingos (2009) have just introduced, a new algorithm
for MLN structure learning, which, likusL, embraces a bottom-up perspec-
tive. BecauseHL performs relational pathfinding (Richards & Mooney, 1998) o
a lifted hypergraph, it is able to search for longer pathsthiasL in a reason-
able amount of time, which enablesL to achieve excellent performance on large
datasets, such as Cora (Bilenko & Moaney, 2003). As repdydbk and Domingos
(2009), using a slightly different experimental set-uprrours,LHL has accuracy
comparable to that adfusL on the UW-CSE dataset, but shorter training time; on
IMDB, it outperformsBuUSsL in terms of accuracy, but takes longer to train. Results

are not reported for the WebKB dataset.
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Chapter 5

Using MLNs to Resolve Ambiguous Web Queries

In Chaptef B, we considered approaches for overcoming ogenmahich
training data may be limited, when information only aboutrea# group of entities
is available. In this chapter, we demonstrate how throughuge of relational
information we can overcome a limitation on the amount oitgsspecific data that
is provided. In other words, here we assume that very ligtleniown about each
entity and we develop an approach that bases its prediationglations among
the entities. We focus on a particular application, Web gui#sambiguation, in
which the task is to determine the intent of a search-engsee when she enters a
potentially ambiguous query. We consider a more privacgraveetting in which
the only information available about any particular usethet captured in a short

search session of 4—6 previous searches on average.

5.1 Motivating Web Query Disambiguation from Short Sessios

Personalizing a user’s Web search experience has becorbeaatvarea of
research in recent years. One of the most actively reseitopées in this area is
Web query disambiguation, or automatically determinirg ititentions and goals

of a user who enters an ambiguous query. This is not surgrigiiven the fre-
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quency of ambiguous searches and the unwillingness of tserster long and
descriptive queries. For example, Jansen and Spink |(2006})fthat abou0% of
search queries, submitted to several engines, consist@aiofjle word. Further-
more, Sanderson (2008) reports that anywhere betweenlyotfghand23% of the
queries frequently occurring in the logs of two search eeg@re ambiguous, with

the average length of ambiguous queries being close to one.

Ambiguity exists not only in cases such as the all-too-fanlfjaguar” ex-
ample (which can be a cat, car, or operating system), butialsearches that do
not appear ambiguous on the surface. Queries that are copoumsidered unam-
biguous often become ambiguous as a result of the wealth bfd®Marces, which
examine different aspects of a given topic. For example easlygerved in our data,
a search for “texag’may be prompted by at least two different kinds of intentions
In one session, a user who had first searched for “george vh” lpusceeded to
search for “texas” and selectaavw.tea.state.ix.us , thus indicating an inter-
est in Texas government agencies. In another session, ¢éhentisnded to learn
about travel to Texas because repeated searches for “gdagel” were followed
by a search for “texas” and a click ww.tourtexas.com . This indicates that
even a query, such as “texas” that normally refers to a siaegtiy, may become

ambiguous.

Most approaches to Web query disambiguation leverage & ysewrious

interactions with the search engine to predict her inteistahen entering an am-

We write these queries in lower-case because this is howieey typed by the searchers in
our data set.
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biguous query. Typically, the actions of each user are |dgmeer long periods

of time (e.g., Sugivama, Hatano, & Yoshikawa, 2004; SungZéiu, Lu, & Chen,
2005; Dou, Song, & Wen, 2007). While techniques that asstmaavailability of
long search historieor each useare applicable in some situations, in many cases
such approaches may raise privacy concerns and may be WdiffiGonplement for
pragmatic reasons. After the release of AOL query log ddtavad journalists

to identify one user based on her searches (Barbaro & Z@i§6), many people
have become especially wary of having their entire searstoties recorded by
search engines. This has led to increased interest in tieakitsues surrounding
user data collection (e.g., Conti, 2006), and the appearahsearch engines that

expressly do not store any user activity information, sucail

However, in order to determine user intent when typing anigodus query,
at least some information must be available about the useprdsent an approach
that bases its predictions only on short glimpses of useckezctivity, captured
in a brief search session (Mihalkova & Moohey, 2009a). Ouraach relates the
current search session to previaortsessions obtherusers based on the search
activity in these sessions. Crucially, our approach duedsssume the availability
of user identifiers of any sort (i.e. IP addresses, login rs&arete.) and thus such
information, which could allow user searches to be trackesl tong periods of

time, does not need to be recorded when our approach is used.

As an example, consider the query “scrubs,” which couldrreither to the

Zhttp://www.cuil.com/
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—Search Session 1—

98.7 fm — www.star987.com/main.html
kroq —  www.krog.com/
scrubs — Iscrubs-tv.com

—Search Session 2—
huntsville hospital — www.huntsvillehospital.org
ebay.com — |ebay.com
scrubs — Www.Scrubs.com

Table 5.1: Two sessions in which the users searched for tey gscrubs.”

popular television show or to a type of medical uniform. &Il juxtaposes the
users’ actions in two sessions. The sessions are shorteatth containing only
two searches preceding the ambiguous query; neverthéfesshort glimpse of
the users’ actions is sufficient to provide an accurate iddheousers’ intentions
because by examining historical data, one may discoveptwtle who search for
radio stations are probably “ordinary” users and wouldefae be interested in the
television show. On the other hand, by relating Session 24sisns of other users
who searched for medical-related items, we may be able tigirnat the second

user has more specialized interests.

Our proposed setting is appealing also from a pragmaticlptaint because
it does not require search engines to store, manage, anetplong user-specific
histories. Identifying users across search sessions thandifficulty arising from
methods based on long user-specific search histories. ssgbpidy, to require
users to log in before providing personalized search, magumebersome. The
alternative of using as an identifier the IP address of thepeen from which the

search was initiated is also unsatisfactory, especiaklases when entire organiza-
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tions share the same IP address or when all members of a laddiselarch from the
same computer. Disambiguation techniques that explidiiyiot use such identi-

fiers and instead rely only on information from brief sessiamoid such difficulties.

When so little is known about a searcher, the problem of qdiesgmbigua-
tion becomes very challenging. In fact, it has previouslgrbargued that “it is
difficult to build an appropriate user profile even when therusistory is rich”
(Dou et al. 2007). We develop an approach that succesdévgrages the small
amount of information about a user captured in a short seseskion to improve
the ranking of the returned search results. Our approachME&ls to exploit the
relations between the session in which the ambiguous gaesgued and previous

sessions.

SRL techniques are appealing for the problem of Web quemgnuisgua-
tion for two main reasons. First, the data is inherentlytretel—there are several
types of entities: queries, clicked URLSs, and sessions;hwielate to each other in
a variety of ways, e.g., two sessions may be related by virtgentaining clicks to
the same URLs or searches for similar queries; queries magléked by sharing
words or by being followed by clicks to the same URLSs, and sdSRL techniques
allow us to learrgeneralmodels of the ways in which the various types of entities
interact, thus overcoming the problem that not much may logvkrabout any par-
ticular entity, i.e. a particular URL. Second, data recogdiuman interactions with
a search engine is likely to be noisy. SRL models allow fobptmlistic inference,

helpful when reasoning from noisy data.

Before we describe the details of our approach, we discus® selated
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work.

5.2 Related Work

Web query disambiguation and personalized search are terggqroblems,
and have been studied under a variety of settings and assuspiVe review some
of this work and draw distinctions between existing researad the work presented

in this chapter.

5.2.1 Web Search Personalization

An early personalization techniques was developed by &itizik and Dent
(1997). To disambiguate a query, their approach uses recbgimilar past queries
over all users in order to include additional search ternthénoriginal query, thus
narrowing down the search. Unlike these authors, we areeistd in re-ordering
the results returned by the search engine rather than mioglifiyat set by providing

additional search terms.

Several authors have proposed techniques addressing dbemteere, for
each particular user, a relatively long history of that issartteractions with the
search engine is available. Sugiyama et al. (2004) pregsgrsanalization method
that builds a user preference model by modeling separdteljong-term and “to-
day’s” user interests. The user profile is viewed as a wethaverage of these two
components. In addition to relying on long-term records s¥ractivity, their ap-
proach also uses the content of browsed web pages whenwdngjruser profiles.

In contrast, we are interested in a more light-weight apgitahat does not neces-
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sarily use page content. Sun et al. (2005) use spectral uhetb@erform person-
alization by organizing the data into a three-dimensiosa$or comprised of users,
queries, and clicked pages. In a related vein, Sun, Wang, Slemg, and Chen
(2006) extended co-clustering (Dhillon, Mallela, & ModR2803) to work with three-
dimensional tensors and simultaneously clustered useesjes, and pages. Be-
cause of the sparsity of the data, these tensor-based nsedhedinlikely to be ef-
fective in the case we study, where each user clicks on ordywahges and enters

only a handful of queries.

A comprehensive empirical study of several Web search patigation
techniques is presented by Dou et al. (2007). These tecbsiglso use longer-
term histories (up to 12 days) of the same user. The authaisttiat the best-
performing methods are based on the intuition that the Weglepanost relevant
to a user are those clicked frequently in the past by that aisby related users,
where user similarity is measured by estimating user meshiggin a pre-defined
set of categories. Such a strategy is unlikely to work in ettirsy because the ses-
sions in our data represent one-time interactions thatlysianot contain repeated
clicks to the same URL. Joachims (2002) and Radlinski andhlo®s (2005) use a
clever method for deriving constraints about user prefasiny observing whether
or not the user clicked on or skipped over particular seaeshlts. These prefer-
ences are then used to train a system for ranking searchs@sabrding to user’s
preferences. Another related project (Teevan, Dumais, &ith) 2005) relies on
sensitive user information to personalize Web search bgtoocting a user profile

from long-term observations on the user’s activities, mgdrom browsing history
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to e-mail. In general, all previous work discussed in thétlas paragraphs makes
the assumption that long-term information abeath users available. In contrast,
we study the setting where personalization is performeédas records of very

short interactions with the search engine.

To the best of our knowledge, the only previous work thatdtrgjuery
disambiguation from short sessions is that of Aimeida andeiMia (2004) in which
users are identified as belonging to a set of communitiesdardo determine their
interests. The authors experimented with data from onlowkbtore search sites for
computer science literature, and their approach is talléoesituations when user
interests fall into a small set of categories, organizingrsisnto 10 communities.
While in a more restricted application of search, such asiafieed book search,
this small number of communities may be sufficient to mod#eknt aspects of
user interests, when, as in our case, the goal is to disamgigueries in a general-
purpose search engine, a small number of communities iy liade insufficient to
effectively model the variety of user interests, and allayvior more communities

may be prohibitively costly.

Privacy-aware Web personalization has been addressediog&and Horvitz
(2008), whose method considers the privacy cost of a péatipiece of user infor-
mation and explicitly models the improvement in persoraion versus the cost of
the information that was used. While the ability to tradepEfformance with cost
is highly desirable, their method relies on more informatout the user than is

available in our setting.
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5.2.2 Learning to Rank

Learning for Web query disambiguation is also related tokwmr learning
to rank (e.g., Burges et al., 2005). The latter task is togedumodel that produces
good rankings of all the results relevant to a query, withtaugeting the specific
interests of the current user. Query disambiguation canidaged as auxiliary to
this process, where we take the most relevant results, asntieed by the general
ranker, and re-order them for each user to better targehtaeests of that user. As
in Web query disambiguation, models that incorporate iaiipliser feedback can

lead to better results (e.q., Agichtein, Brill, & Dumais 0ZX).

5.2.3 Determining User Intentions

Query disambiguation is also related to determining usatsgand inten-
tions. One of the earliest systems is Letizia (LiebermafA5)9wvhich operates on a
client machine and observes the browsing behavior of a Ugem request, Letizia
can provide a ranking of the hyperlinks in a page based onré@digtions of the
user’s interest. Another early system (Lesh & Etzioni, )38&ermines the goal of
a user from an observed sequence of actions. These earlyaabgis, however, do

not incorporate a learning component.

The TaskPredictor (J. Shen, Li, Dietterich, & HerlockerQ@plearns to pre-
dict the current task of a user based on the properties ouierttly open window,
or of an arriving e-mail message. Because training thisesystquires poten-
tially sensitive information, such as e-mail and active woents, it is intended

to be run on the user’s local machine. In Web personalizaiiois frequently
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necessary to determine whether a user issues a query to elgsea&rch engine
with a particular goal in mind, such as job search, produatcde or restaurant
search. In this way, the search engine can deploy a senatevis especially de-
veloped for that task. Query intent is resolved by classgyach query according
to whether it indicates general or special interest (e.gSt2n, Sun, Yang, & Chen,

2006; Li, Wang, & Acero, 2008).

5.2.4 Producing Diverse Result Sets

Orthogonal to disambiguation is the issue of producing ard® set of doc-
uments for a given query. Recent work in this area includaisdhChen and Karger
(2006), whose technique ranks results so as to cover as nifenedt aspects of
interest as possible, and that of Yue and Joachims (2008)wdpmmse a technique
based on the structural SVM framework. A related area isdhalustering search
results in groups of common topic. For example, Wang and Z€417) use search
log data to learn useful aspects of queries in order to aldulsean. The ability to
disambiguate user intent complements these contribubenause it would allow
the most relevant cluster, or the most relevant results &alinerse set, to be placed

ahead of all others on the search page.

5.2.5 Collaborative Filtering

Our proposed approach is also related to work in collabaediltering
where the goal is to suggest items that would be of interest tiser, based on

that and other users’ previous preferences. Early coniparstudies of collabora-
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tive filtering algorithms include (Breese et al., 1998; ldeKer et al., 1999). More
recently, Popescul et al. (2001) and Melville et lal. (200®ppsed approaches that
combine collaborative and content-based informationtimfog recommendations.

However, these approaches have not been applied to pesogaleb search.

5.3 Proposed Approach

Our general approach follows that of previous applicatmfifdLNs to spe-
cific problems, (e.gl, Poon & Domingos, 2007): we hand-cdtedstructure of the
model as a set of first-order formulae and learned weightthse formulae from
the data. This approach is also analogous to that commomgued in the proba-
bilistic graphical model literature, where the dependememong the variables of a
graphical model are manually specified and then paraméiatrpih down the exact
probability distribution are learned from the data. Theadage of using MLNSs,
however, is that they come with effective general-purpesening and inference
algorithms; thus one does not need to re-derive specialifedence techniques for

every new model.

The key idea behind our approach is to relate the curesmiye sessiomrA
in which an ambiguous query is issued to previoudyackground sessions from
historical data, where it is assumed that both the active@eand the background
sessions are short. Sessions are related by sharing vanmssof information. We
define the following predicates to capture these relati@sshSince every train-
ing/testing example refers to a single,d) pair, A and@ are implicit in the exam-

ple and do not need to appear as arguments of the predicates.
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Result(R): R is a search result fap.

ChoseResult(S,R): Background sessiof clicked onR after searching for

Q.

ClickOn(R): User in sessiom clicks on resulR in response to the search

for Q.

SharesClick(S,D): Background sessiofiand A share a click to URL with

hostname.

SharesKeywordBtwnClicks(S,K): Background sessiof and A share a

keywordk, found in the hostnames of clicked URLs in each of the session

SharesKeywordBtwnClickAndSearch(S,K): Background sessios and A
share a keywor#, found in the hostname of a clicked URL 4hand a search

inS.

SharesKeywordBtwnSearchAndClick(S,K): Background sessios and A
share a keywor#, found in a search irl and the hostname of a clicked URL

inS.

SharesKeywordBtwnSearches(S,K): Background sessiop and A share a

keywordK that appeared in searches in both sessions.

ClicksShareKeyword(R,D,K): Keyword K appears in the hostname of both

result R and previous clickD from sessiom.
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e ClickAndSearchShareKeyword(R,S,K): Keyword K appears in the host-

name of resuli? and in previous search quefyfrom sessior.

Figure[5.1 illustrates the predicates from the above setafeaused to re-
late two sessions. The last two predicates capture infeomébcal to the active
session. In the active sessidnonly the clicks and searches temporadhgceding
() are used. For the predicates in which a keyword relates tesi@es, we used
only those keywords that appeared at |ledst times (corresponding to removing
keywords that appeared less tHaf0083% of the time) and at most0, 000 times
(corresponding to removing the té@ most popular keywords) over the training
portion of our data set. This was done in order to avoid rarmigspelled key-
words and to make the size of the data more manageable bydexgluninforma-
tive overly-common ones. We did not experiment with otheraftivalues. We
describe how the set of keywords is formed and how keyworeleziracted from

URLSs in Sectioh 54.

The goal is to predict theélick0On(R) predicate, given as evidence the values
of the remaining ones. The search results available forengjuery are then ranked

by the predicted probability that the user will choose talctin each of them.

5.3.1 Model Structure
This section describes the formulae used in our MLN models.

Collaborative Formulae: The collaborative formulae, shown in lines 1-5

of Table[5.2, draw inferences about the interests of thevactser based on the
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sharesKeywordBtwnSearches [

Activeié Session _sharesKeywordBtwnClickAndSearqhv"'ﬁ

J

Figure 5.1: An illustration of predicates that relate sassi Tokens in boxes rep-
resent queries, whereas tokens preceded by an arrow reptkeeclicked result
for the preceding query. Thactive session, on the left, is related to some of the
backgroundsessions, on the right, by shared clicks or keywords. Thenskhat
are shared in each case are circled. Not all possible retatice drawn in order to
reduce clutter.

choices made by related users from background sessiongx&ople, formula 1
establishes a relationship between the event that thecagsi®r chooses result
and the event that the user in a previous sesSiamlated to the active session by
sharing a click to a URL with hostnam®, chose resulfz after searching for the
current ambiguous query. Thus this formula exploits one typrelation between
the active session and background sessions to provideredadsd the active user’s
intentions. This formula is always false when one of the titste evidence predi-
cates is false, and in such cases it does not influence thalghtypthat the active
user chooses a particular search result. Thus, this forplais a role only for

background sessions that share clicks with the active@easid chose a particular

result R. The larger the number of such sessions, the stronger thef bt the
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1: Result(R) A SharesClick(S,D)
AChoseResult(S,R) A ClickOn(R)
2: Result(R) A SharesKeywordBtwnClicks(S,K)
AChoseResult(S,R) A ClickOn(R)
3: Result(R) A SharesKeywordBtwnClickAndSearch(S,K)
AChoseResult(S,R) A ClickOn(R)
4: Result(R) A SharesKeywordBtwnSearchAndClick(S,K)
AChoseResult(S,R) A ClickOn(R)
5. Result(R) A SharesKeywordBtwnSearches(S,K)
AChoseResult(S,R) A ClickOn(R)
Result(R) A ChoseResult(S,R) A ClickOn(R)
Result(R) A ClicksShareKeyword(R,D,K) A ClickOn(R)
Result(R) A ClickAndSearchShareKeyword(R,S,K) A ClickOn(R)
Result(R1) A Result(R2) ARl # R2
AClickOn(R1) = —ClickOn(R2)

Table 5.2: Formulae included in the model.

active user will also pickk; alternatively, the larger the number of such sessions,

the greater the penalty for not pickigjin the active session.

Formulae 2-5 encode analogous dependencies using eaah rafntiaining

session-relating predicatés.

Popularity Formula: Formula 6 in Tablé 5]2 encodes the intuition that the
user will click the result that was the most popular amongkgemund users that
searched for this ambiguous query. As before, the resulivfoch there are the
largest number of clicks in background data, and thus tlgesamumber of ground-

ings of this formula that are not falsified by the evidencd|, léve the largest prob-

3Although it may seem more natural to write these formulaergsications, i.e Result(R) A
SharesClick(S,D) A ChoseResult(S,R) = ClickOn(R), we found that defining the structure in
this way leads to instability during weight learning.
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ability of being clicked.

Local Formulae: Formulae 7-8 in Tablé 5.2 use information local to the
active session to predict the user’'s preferences. Form(8a States that the user
will click a result that shares keywords with a previous fegsearch) from the
active session. We clarify that keywords wer extracted from the pages to which
a URL points, but only from the URL itself because we are iegézd in developing
a light-weight re-ranker. Because in our setting sessioasery short, we do not
expect the local formulae to contribute much to the overakliel performance. We

include them in order to verify this.

Balance Formula:Finally, formula 9 in Tablé 5]2 sets up a competition
among the possible results by stating that if the user clicles of the results, the
user will not click another one. This formula prevents alsgible results from
obtaining a very high probability of being clicked. This neakhe model more dis-
criminating and allows the same set of weights to perform axgdn as the number
of groundings of the other formulae varies widely from onévacsession to the

next.

It is worth noting that all of these formulae encode “rulegtmimb” and
useful features, which we expect will hold in general, buyreametimes be vio-
lated, e.g., the balance formula is violated when a useksheore than one result
for a query. The ability of MLNs to combine such varied sosroé information
effectively and in a principled way is one of the main consitiens that motivated

our choice of model.
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Using these formulae, we defined three MLNSs:
MLN 1 — Purely Collaborative: Contains only the collaborative formulae (1-5)
and the balance formula (9).
MLN 2 — Collaborative and Popularity : Contains formulae 1-6 and the balance
formula (9).
MLN 3 — Collaborative, Popularity, and Local: Contains all formulae. It can
thus be viewed as a mixed collaborative-content-based hjede, Popescul et al.,

2001; Melville et al., 2002).

5.3.2 Weight learning

To learn weights for the structures defined above, we useddheastive
divergence algorithm (CD) described by Lowd and Domingd@){). CD can be
viewed as a voted-perceptron-like gradient descent dlgorin which the gra-
dient for updating the weight of formul&’; is computed as the difference be-
tween the number of true groundings @f in the data and the expected number
of true groundings of”;, where the expectation is computed by carrying out a
small number of MCMC steps over the model using the currdadyned weights.
Like lLowd and Domingos (2007), we computed the expectatioits MC-SAT
(Poon & Domingas, 2006). We used the implementations ofettagorithms in
the Alchemy package (Kok etlal., 2005), except that we adaibte existing im-
plementation of CD so that learning can proceed in an onéshibn, considering
examples of sessions containing ambiguous queries oneebyldins was done be-

cause otherwise our data was too large to fit in memory. Wénsdearning rate to
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0.001 and the initial weight of formulae t0.1 and kept all other parameters at their
default values. Parameter values were selected on a vahdst, strictly disjoint

from our test set.

5.4 Data and Methodology

We used data provided by Microsoft Research containingyanaed query-
log records collected from MSN Search in May 2006. The datesists of times-
tamped records for individual short sessions, the quesssed in them, the URLSs
clicked for each query, the number of results available &mhequery and the po-
sition of each result in the ranked results. We removed gadadr which nothing
was clicked. The average number of clicked results per@essver all sessions in
the data, is3.28. The data does not specify what criteria were used to orgamiz
set of user interactions into a session; e.g., we do not kreswrhultiple open tabs
in a browser were treated. Although some of the sessions landp to the same
users, the data excludes this information through the ldakser-specific identi-
fiers. This dataset therefore perfectly mirrors the scenairidisambiguating user
intent from short interactions that we address in this neteaBecause there is a
one-to-one correspondence between users and sessiondl, uge\these two terms

interchangeably.

The data has two main limitations. First, it does not statécvisearch
gueries are ambiguous. Automatically detecting ambigiudyn user behavior is
an interesting research question (e.g., Teevan, Dumaisellihg, 2008) but is not

the focus of this work. We therefore employed a simple hé&arie obtain a (pos-
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sibly noisy) set of ambiguous queries, using DMQuvv.dmoz.org ): a query
string is considered ambiguous if, over all URLSs clicke@gaftearching for this ex-
act string, at least two fall in different top-level cateigsr according to the DMOZ
hierarchy. This heuristic does not require any human effestond that already
invested in constructing DMOZ. Unfortunately, we could matlude DMOZ cat-
egory information into our models because many Web pagerdarelassified in
the hierarchy. We limited ourselves to strings containipgaitwo words, thus ob-
taining 6, 360 distinct ambiguous query strings. Limiting the length otexaially
ambiguous queries to two was motivated by the fact that nmabiguity occurs in
short queries. For example, Sanderson (2008) found thatvérage length of am-
biguous queries in two search log datasets ranges fro2to 1.26 words. Queries
of length at most two constitutet.7% of all queries in our data. Of these queries,
using the above method, we identifigd% as ambiguous, which agrees with the
statistics reported by Sanderson, who found that betvoe® and 3.9% of all

queries are ambiguous (Sanderson, 2008).

Another limitation of our data is that it does not list all ti&Ls presented
to the user after a search but just the ones on which the usellgclicked. During
testing, this is a problem because we do not know what pdisgibito present
to the system. To overcome this, we assumed that the set ofRilk clicked
after searching for a particular ambiguous query stringr tive entire dataset, was

the set of results presented to the user. Our approach sttrith that used in

4In Sectiorf 5.1, we cited Sanderson’s findingsffequently occurringjueries, whereas here we
refer to his findings oveall queries.
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www.dmoz.org

previous work, e.g., that of Dou et/al. (2007), in which mggpossible results lists
are generated by separately querying the MSN search enginet{ich data was
collected) for each query. Although the queries were peréat less than a month
after the data was collected, the authors found éfigtqueries from4, 639 “lost
the clicked web pages in downloaded search results.” Bedausur case almost
3 years have passed since the MSNO6 data was collected, feerpdethe simpler
approach based on the available data. With this method,whi@ge number of
possible results for an ambiguous query string Wd$. Figure[5.2 shows the
distribution over the number of ambiguous queries for whighhave a particular
number of possible results. Although this heuristic is infpd, it is likely to bias
the resultsagainstour proposed solution—since every possible result wasdoun
to be relevant by at least one user, our systems cannot geshayes by simply

separating the useful results from the totally irrelevargs

Figure[5.8 shows the distribution over the number of clickscpding an
ambiguous query in our test data. As can be seen, our tegtisgssre indeed very

short.

Several of the predicates we define use keywords. We nextibedwow
we generated a list of keywords and how we extracted keywioods hostnames.
To generate a list of keywords, we performed a pass overahihg sessions.
Any token separated by spaces was considered a keyword. Asomed in Sec-
tion[5.3, we then kept keywords that appeared at [g#stimes and at mosito, 000
times. To determine which keywords occur in a given hostnameefirst use the

non-alphanumeric characters in the hostname to break ih dow pieces and then
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Figure 5.2: Histogram showing the distribution over the benof possible results
available for an ambiguous query.

match each piece with keywords such that as much of the mexmvered as possi-

ble, using the smallest number of keywords.

To ensure a fair evaluation, the data was split into a trgirpariod and

a testing period. The training period was used for trainwajidation, keyword
generation, andif (Manning, Raghavan, & Schutze, 2008) calculatiodgq were
used by one of the baselines) and consisted of the first 25ada@lgga. The remain-
ing 6 days of data were reserved for testing. Sessions thdedgtin the training
period and ended in the test period were discarded to avaithoonating the test
data. As validation/testing examples we used sessionctmihined an ambigu-
ous query from the training/testing periods respectivelydecrease the amount of

random noise in the results, we removed from the test seipsssthat contained
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Figure 5.3: Histogram showing the distribution over the benof clicks preceding
an ambiguous query in the test data. The X axis is drawn irstage.

no relational evidence, i.e., we removed the sessions trmdain no true ground-
ings of thesharesKeyword/Click predicates introduced in Section15.3. In
this way we obtained1, 234 test sessions, which constitutes); of the available
test sessions. The distribution over the number of previtiaks in these sessions

is shown in Figuré 513. As can be seen, the peak is at 3 distiicés before the

ambiguous query.

During testing, only the informatioprecedingthe ambiguous query in the
active test session is provided as evidence. The set oftpesssults for this am-
biguous query string is given, and the goal is to rank theseltebased on how
likely it is that they represent the intent of the user. Therusay click more than

one result after searching for a string. This behavior migghindicative of at least
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two possible scenarios: either the user is performing atoexory search and all
clicked results were relevant, or the user was dissatisfigdthe results and kept
clicking until finding a useful one. Since the data does ndicate which of these
scenarios was the case, we treated all results clicked bygeeafter searching
for the ambiguous query as relevant to his or her intentidimés presents yet an-
other source of noise, and in the future we plan to explorecgmhmes similar to the
implicit feedback techniques described by Radlinski aratons (2005) to dis-
entangle these possibilities, although the exact methoodaced by these authors
would not be applicable to our data because it requires thikadwlity of anordered
list of the results returned to the user by the search endinether possibility is
to use the time spent on a given page as an indicator of itgarebe. User studies
(e.g.,.Fox, Karnawat, Mydland, Dumais, & White, 2005) hasefoemed the intu-
ition that pages on which the user spends more time are mekare to her search.
Our data contains time-stamped records of user activi@eg,is possible to obtain
information on the amount of time spent on each clicked pagep the last one

within a session. We leave the exploration of this issue tioréuwork.

Learning was performed as described in Section 5.3.2. Tuaeathe
learned models, we used Alchemy’s implementation (Kok e2&l05) of the MC-
SAT algorithm (Poon & Domingos, 2006) for inference. Durinéerence, we ran
for 1,000 burn-in steps and 10,000 sampling steps. All atiference parameters

were kept at their Alchemy defaults.
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5.4.1 Evaluation Metrics

For evaluation purposes, the task of query disambiguatorbe viewed as
an information retrieval problem: rank the set of possiklgults so that the URLs
reflecting the user’s intentions (i.e., actually clickedtbg user) appear as close to
the top as possible. Thus, we used standard informatiaevatmetrics to evaluate

the performance of our system (Manning etlal., 2008) (Chiaite

(MAP) Area under the (interpolated) precision-recall curve,chhs iden-

tical to the Mean Average Pecision metric, commonly used by the IR community.

The MAP score is computed over a set of test instafitas follows:
MAP(T)) = in > Par
‘T| teT |Rt| r€R: ’
where R; is the set of possible results for théh test instance and P@ls the

precision of the top results:

Num relevant docs among the top
. .

P@ =

(AUC-ROC) Area under the ROC Curve, which can be viewed as repre-
senting the mean average true negative rate. Using theiorofadbm above, this
metric is computed as follows:

1 1
AUC-ROQT) = — > — > TN@r,
|T‘ teT ‘Rt‘ reR:

where TN@: is the true negative rate of the topesults, defined as

Num irrelevant docs in positions- r

TN = :
@r Total num irrelevant docs

124



Intuitively, the MAP measures how close the relevant URlestarthe top.
One disadvantage of this metric in our case is that it is isisiea to the number of
results to be ranked. For example, ranking a relevant restlie second position
obtains the same score both when the number of possibiktiz@nd when it is

100, even though in the second case the task is clearly moreutiffic

Assuming that the user starts scanning the page of retueseidts from top
to bottom and does not consider any results appearing ateretevant ones, the
AUC-ROC intuitively represents the percentage of irretevasults that wereot
seen by the user before clicking on a search result. Thusydonaranker would
obtain an AUC-ROC of).5. Another useful characteristic of this measure is that

unlike the MAP, it is sensitive to the number of possible hesthat are to be ranked.

A final issue is how to break ties when a relevant result hasdinee score
as some irrelevant results. We report fliverage casén which the relevant result is
placed in the middle position within the group of resultshaejual scores. For the
most interesting systems, we also reportwloest casein which the relevant result
is placed last within the group of results that share scoféss is motivated by
the goal of performing effective personalizatioonsistently The best case is not
interesting because for it perfect performance can be mdxdaby giving all results

the same score.

5.4.2 Systems Compared

We compared the MLNs from Se€t. 5.3 to several baselines:

Random: Ranks the possible results randomly.
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Collaborative-Pearson Implements a standard collaborative filtering algorithm
(Herlocker et all., 1999) that weights each previous usexdas the Pearson corre-
lation between the preferences (i.e. clicks) of that usdrthe active user. We con-
sidered a clicked result to have rating 1, and an unclickedltréhat was clicked by
another user for the same query to have rating 0, and all o¢satts to be unrated.
The n closest neighbors are chosen (we used 30 following (Herlocker et all.,
1999)), and the prediction that a given result is selectddrimed as a weighted
average of the deviations from the mean of each neighbor.
Collaborative-Cosine Identical toCollaborative-Pearsonexcept that it computes
the similarity between the active user and a previous us#reasosine similarity
between thedf-weighted vectors of their clicked results.

Popularity: Ranks each result according to the number of previous@esshat

searched for the ambiguous query and chose it.

The goal of query disambiguation is to improve the resulkirag over that
obtained by just using the general ranker. Thus, a natussline is the general
ranker itself, which in our case is the MSN search engine.aBse the position
in the ranked list of each clicked result is available fronn data, we could com-
pute MAP and AUC-ROC scores for the MSN search engine basé¢kese posi-
tions. However, because people have a strong bias towacétggl the top result
on a pagel(Joachims, Granka, Pan, Hembrooke, & Gay, 2008),ssaomparison
would give an unfair advantage to the MSN search engine. M@ the set of
results that are displayed and the ranking of those reseis o shift frequently

(Teevan et al., 2008), thus a highly relevant result may awetbeen clicked sim-

126



ply because it did not appear in the list displayed to the. Useally, such a base-
line does not take into account that there may be at leastaauts that satisfy an
information need equally well. Thus, a fairer comparisotht® search engine re-
quires actually deploying our proposed systems and testgigeffectiveness with

real users. Unfortunately, we do not have the resourcessaeto launch such a

study.

5.5 Results

Table[5.8 presents the performance when ties among restiitshe same
score are broken as in the average case.Jdiaborative-Pearsonbaseline per-
forms no better thaRandomon AUC-ROC and only slightly better th&andom
on MAP. Switching to cosine similarity i€ollaborative-Cosinegives modest (but
significant) improvements. THeopularity baseline is very strong and outperforms
the other baselines, as well BE. N 1. However, combining popularity with rela-
tional information inMLN 2 leads to significant gains in performance, &idN 2
achieves a significantly higher AUC-ROC scorBILN 2, our strongest model,
highlights the main advantage of using MLNs: we were ableidaicantly im-
proveMLN 1 by incorporating a reliable source of information simplydyding
the popularity formula to the model. Finally, as expected,olbserve that adding
local formulae inMLN 3 does not improve performance. This demonstrates that
the interactions of the active user prior to the ambiguousryjare not directly
helpful for determining intent and occurs as a result of ttewity of sessions in our

data (cf. Figuré 5]13). The inefficacy of local formulae magoabe due to the fact
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| System | MAP | AUC-ROC |
Random 0.317] 0.502
Collaborative-Pearson| 0.333| 0.502
Collaborative-Cosine | 0.360| 0.521

Popularity 0.389| 0.575
MLN 1 0.375| 0.563
MLN 2 0.386| 0.587
MLN 3 0.366| 0.583

Table 5.3: Results over all test sessions that contain angaimiss query when ties
in ranking are broken as in the average case. Numbers in lbesipt significant
improvements over all preceding systems at the 99.996%d=ode level accord-
ing to a paired t-test. Additional significant differences:aMLN 1 is a significant
improvement over all baselines excépularity, andMLN 2 improves signifi-
cantly over all preceding systems exceptRoipularity also in terms of MAP; there
is no significant difference between the MAP scoreBapularity andMLN 2 ;the
MAP score ofPopularity is significantly higher than that &fILN 1.

that a session may continue when the user is dissatisfiedhathesults obtained
so far. It is interesting to contrast this result with the fing$ of Dou et al.[(2007)
who experimented with much longer sessions (up to 12 days)eported that the
previous interactions of the active user presented a veoyngtsignal for person-
alization purposes. This emphasizes a fundamental diteren the assumptions
on the data made in this versus previous research: becaosegase user-specific
session information is so limited, we cannot rely on onlyngshe past preferences

of the active user and must instead exploit relations torpttistorical, users.

Next, we analyze in more detail the performance of the MLNeays to that
of Popularity, which is the strongest baseline. Table 5.4 presents terpsance

over all test sessions when ties in ranking are broken a®iwthst case. As can be
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| System | MAP | AUC-ROC |
Popularity | 0.380| 0.525
MLN 1 0.373| 0.563
MLN 2 0.385| 0.586
MLN 3 0.355| 0.572

Table 5.4: Results over all test sessions that contain amngaimis query when ties

in ranking are broken as in tlveorst case.Numbers in bold present significant im-
provements over all preceding systems at the 99.996% caoicdevel according

to a paired t-test. Additionally, the MAP scoredpularity is significantly higher
than that ofMLN 1.

seen,Popularity’s AUC-ROC score decreases sharply, whereas the MLN models
maintain their performance to almost the same level as iratleeage case. This
behavior is observed partly becau®epularity introduces many more ties among
the scores of possible results than do the MLN models. Inquéat, averaged over
all test sessions, the ratio between the number of pos&bigts and the number of
distinct scores foPopularity was1.8, whereas foMLN2 it was just1.02. These
results indicate thaopularity’s behavior is erratic and can, for the same user and
the same query, lead to rankings that vary highly in qualityis kind of behavior
can give the perception of poor quality to a frequent user.ti@nother hand, the

MLN models are consistent, maintaining the quality of thramkings in the worst

case.

Finally, we compare the performanceRdpularity to that ofMLN 2 while
varying the degree to which some of the possible resultsdambiguous query
dominate in popularity over the rest. We formalized this @lfofvs. Letq, be

the empirical distribution over the results clicked for anlkaguous query). This
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distribution was measured empirically on the training daéa, for every ambigu-
ous query, we determined from the training sessions theoptiop of time each
potential search result was clicked. We then separatec#gi@xamples into bins,
such that bin contains all test sessionsfor which | K Ly, |juniform] = i, whereQ
is the ambiguous query in sessier@nd K L, |juniform 1S the KL divergence ofj,
to the uniform distribution. In other words, bin O contaihg tsessions in which
the possible results for the ambiguous query were all chagrroughly the same
frequency. Higher-numbered bins contain sessions in whinehof the search re-
sults strongly dominates in popularity over the other gubses. When this is the
case, predicting just based on the popularity of a resukggyood performance.
The more challenging scenario occurs in the lower-numbleegziwhere the pref-
erences over possible results are more uniformly disethufFigures 54 and 5.5
comparePopularity to MLN 2 when ties in ranking are broken for the average and
worst cases respectiveMLN 2 maintains a lead ovétopularity until the last two
bins in which the distribution over possible results is gt from uniform. As we
expect, the difference between the performance of the twtesys shrinks as we
move to higher-numbered bins, ahtl.N 2 has a greater advantage oRRapular-
ity in the lower-numbered bins in which the need to disambigisateore pressing.
The sharp drop in accuracy observed in bin 7 is due to thelfiattone of the am-
biguous queries occurring in sessions in this bin was ovelmwimgly followed by
clicks to what seems to be a newly appearing Web page durag$t period. That
page was selected only 3 times in the training period whientlost popular page

in the training period was selected more than 2000 times.
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Figure 5.4: AUC-ROC when ranking ties are broken so as to Isitetheaverage
casefor different bins of KL divergence of the distribution ovgossible results to
uniform.

As a final but important note, inference over the learned rnsodas very

efficient and completed in the order of a second.
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132



Chapter 6

Future Work

This chapter describes some ways in which the contributidnisis thesis
can be extended. We consider future work relating to tranetening, structure

learning, and applications to Web disambiguation.

6.1 Transfer Learning

As we discussed in Section B.1, transfer learning has badiedpo a wide
range of problems and settings. The strong interest in theia motivated not only
by the intellectual appeal of transfer learning as an agprtaat better emulates the
way humans learn, but also by the fact that transfer leareicigniques have proven
effective in addressing many challenging problems. Westowiseveral ways in

which our contributions to transfer learning can be exteinde

6.1.1 Integrating Mapping and Revision

TAMAR views mapping and revision as two separate and independent a
pects of transfer across multi-relational domains. Anrggéng extension would
be a system that instead integrates these two processesadVaetages of such a

system are that it would provide both a way of gauging theulsegs of source
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knowledge, and a more efficient mapping procedure. Suchtaraysould operate

as follows, supposing that the task is to learn MLN structure

Acquiring preliminary knowledge: Given a new target domain, learning starts
from scratch, focusing on acquiring what we will cpteliminary knowledge that
is easier and faster to extract from data than is a full mdsieth knowledge could
consist of short clauses that capture dependencies beawenof relations or a

data structure such as the Markov network template from ten@p

Preliminary knowledge guides mapping: Preliminary knowledge can be help-
ful in guiding the mapping process. For example, bdimAR and SR2LR con-
sider every possible type-consistent predicate mappinbileihis process is ex-
tremely efficient in our domains, it could become prohilativexpensive in do-
mains with a large number of predicates that all take the dgpes of arguments.
Thus, an algorithm that uses the preliminary knowledge tideypredicate map-
ping would be more effective in the latter situations. Suchakgorithm can start
by establishing structural correspondences between tireesonodel and the pre-
liminary target knowledge, akin to how it is done in the stawe-mapping engine
(Falkenhainer et al., 1989) (described on pade 38). If tietimpinary knowledge
consists of short clauses, structural correspondencébavestablished only with
the short clauses in the source model. If instead the pnedirgiknowledge is rep-
resented as a Markov-network-template-like data strectsiructural correspon-
dences will be established between the vliteral dependsmaiplied by the source
clauses and those captured in that data structure. Bedaaigpeeliminary knowl-

edge does not represent all aspects of the target model, nocags analogous to
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that in SR2LR, the predicate mappings implied by these corresponderaebe
used to transfer additional source clauses that would reguore effort to learn

from scratch.

Preliminary knowledge as a relatedness gaugdreliminary knowledge can also
serve as a basis for relatedness measures that estimatmilagity between two

domains. For example, if large portions of the preliminanpwledge cannot be
mapped to the source model, this can be taken as indica@bthih source and tar-
get domains are not sufficiently close. Relatedness meabased on preliminary
knowledge can also be used to perform source selectionviatiche transfer sys-
tem to determine autonomously which from a set of source fsaslelosest to the
target domain. In fact, when models from several previoaesiyountered domains
are available, the system can perform transfer from meltgadurces rather than
limiting itself to a single source. This capability would bspecially useful when
no single previously learned model is a good match for thgetasomain. In such
cases, a combination of two or more sources, each of whidlesepts a different

aspect of the target domain, could be effective.

Evaluation of Mapped Knowledge and Revision: Rather than evaluating pos-
sible mappings with a probabilistic measure, as donabyMAR, better results
could be obtained by using all mappings of the source clailrsedit the structural
correspondences with the preliminary knowledge, attemyptio revise them, and
dropping them only if they are ineffective even after theis®n. This is moti-
vated by the observation in Figure 3.10 tsa&PLR can outperfornm TAMAR even

when knowledge about the domain grows. The revised streiciam then be used

135



to find better mappings of the source clauses, which coutdvatiore of the source
clauses to be transferred, thus alternating between mgyapith revising the source

knowledge.

6.1.2 Bottom-Up Revision

A second direction in which our work on transfer and strugtearning can
be extended is by developing a bottom-up learner, suguas, that can be used
not only for learning from scratch but also for revision ofstg knowledge. Such
a revision algorithm can be used to revise both transferredhaiman-provided
knowledge. In preliminary experiments with such algorighnve found that, given
complete domain knowledge of at least one mega-exarsplgl. obtained better
predictive accuracy when learning from scratch than it digémrevising transferred
knowledge. However, we expect that if target-domain datademplete, revision
algorithms that, likesR2LR, are aware of the missing data would lead to more accu-
rate models. Such algorithms could operate analogousig2o0r by revising only
those aspects of existing knowledge that can be reliabljpated on the available

data and using insights from these revisions to also cotineatemaining aspects.

A related problem is the need for systematic studies of howing the
number of unknown facts in a domain affects the relativeqgrarance of systems
that learn from scratch or use transfer learning. TypicaihBRL applications one
makes the closed-world assumption (CWA) as a convenienoivsipring the data.
Under the CWA only the true facts need to be stated, and amyHatis left out

is assumed to be false. In Sectlon]3.3, we considered onenmaliich the CWA
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can be modified by restricting it so that it applies to a siregigty. An interesting

future question is to study other ways in which the CWA can b&i§ied.

6.2 Structure Learning

We can view MLN structure as serving two distinct purposen.ti@ one
hand, the logical formulae capture dependencies and mgpsdaamong the rela-
tions, such as that if someone teaches courses, then shadaises students. On
the other hand, clauses can also serve as relational fedhatedescribe complex
relational characteristics of the entities in the data. sTippens frequently in
molecular biology domains where the clauses are used toidesaspects of the
chemical structure of the molecules, such as benzene riffgs. TNode construc-
tion procedure oBusL, described in Section 4.2.1 discovers relational features
whereas the Markov network template construction fromiSegt.2.2 finds depen-
dencies among these features. However, at present TNodgwoton is limited to
finding relational features consisting of at most two literaAlthough in principle
the procedure could discover longer TNodes, the size ofdhech space explodes
quickly as the TNode length grows. In many cases, it may bessy to dis-
cover longer features; e.g., to describe a benzene ringneeds to capture the
relations among six carbon-hydrogen pairs. The algorithm, recently developed
by Kok and Domingos (2009), comes with an efficient procedaraliscovering
longer relational features. Thus, in the future, it woulditeresting to explore
ways in whichLHL’s approach can be used BysL to discover more descriptive

TNodes, that could then be related to each other in the Manktwork template
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construction step. This would allow for the efficient diseov of dependencies

among complex relational characteristics.

6.3 Web Query Disambiguation

Our work on exploiting relational information to comperes#br insuffi-
cient entity-specific data in Web query disambiguation waitis several avenues

for future research.

Better disambiguation accuracy can be obtained by incatpm more evi-
dence into our models. For example, our current approaatesethe active session
only to sessions that also searched for that ambiguous .queaddition, we en-
vision including relations to sessions that did not seamshttiat exact query but
clicked on a possible result for it. Additional informatican also be provided by
bringing in outside sources, such as the actual contentsdiple results, or topic

categories in which they participate.

One prerequisite to efficient modeling with such diverserses! of infor-
mation is the ability to retrieve knowledge relevant to a neser efficiently. For

example, one of the formulae we used in Chalpter 5 was:
Result(R) A SharesClick(S,D) A ChoseResult(S,R) A ClickOn(R)

The SharesClick andChoseResult predicates in this formula refer only to ses-
sions that contain a search for the ambiguous query fromutrerat session. This is
a much smaller set than the set of all sessions that contkiasitone click to a pos-

sible result for the ambiguous query. Thus, while in our #xgsmodel efficiency
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is guaranteed by the size of the population with which refetiare established, if
we increase this population in order to obtain richer eviggfficient retrieval of
relevant sessions becomes extremely important. Some wahisidirection has al-
ready been done in the rec@amROG system|(Shavlik & Natarajanh, 2009) and in the
implementation of clause grounding in Alchemy (Kok etaD0%). However, we
believe that more efficient indexing schemes, closely aiplith SQL databases
in which such data can be conveniently stored, would lead@amdtic improve-

ments in efficiency.

A second direction of future work motivated by Web query dibgguation
is learning of more nuanced models. Currently, our systemnka single weight
for each formula. However, some shared domains (represéyt¢he D variable
in the formula above) are better predictors of relatedr®ss dthers. For instance,
we expect that a shared clickyahoo.com |is less indicative of relatedness than
is a shared click tgjcai.org . In preliminary experiments, we attempted to
learn a separate weight for each possible relating domasadh formula but found
that the available training data was too sparse to suppoft an approach. A
better technique would be to first cluster the domains aaegrid their ability to
relate sessions and learn a separate weight for each ruleaidcluster. Ap-
proaches that cluster entities in multi-relational dateehalready been developed
(e.g., Kok & Domingos, 2007, 2009). In this case, howevergwgect that simpler
technigues that can handle training data coming in as astraer than in a batch

would work better because of the large size of the data.

Finally, at present our evaluation procedure is limited g tact that our
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data does not list all results presented to a user but justittieed ones. We would
like to explore ways in which this process can be made less/nsuch as, for ex-
ample, by taking into consideration the amount of time sperd clicked result. It
would also be interesting to test our system in action,agpart of an experimental

search engine on new ambiguous queries.

6.4 Other SRL Models

Because of the generality of MLNs, many of the ideas we hagsqmnted
in this thesis can be applied to other SRL models. In Se¢ti8al3we already
discussed other models that could be used to perform trdesf®ing withsSrR2LR.
Similarly, the main idea used iBUsSL can be employed to train other SRL mod-
els, in particular Bayesian logic programs (BLPs) (Keigi#hDe Raedt, 2001). A
BLP defines a Bayesian network via a set of Horn clauses, daghioh specifies
a dependence of the head on the antecedents. This is ansiog@lLNs in which
first-order formulae define dependencies among their lgefiehus, BLP structure
could be learned using BusL-like algorithm, that first discovers sets of interde-
pendent variables, as in the Markov network template frorap@#r4, and then

searches for Horn clauses that comply with these deperaenci
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Chapter 7

Conclusions

The research presented in this thesis addresses seveeatsasp learn-
ing with Markov logic networks (MLNs). We have motivated afaflowed two
main themes: the effectiveness of bottom-up learning tecias that use the avail-
able data not only to evaluate hypotheses but also to prapese and the need
for methods that allow for effective modeling from limitedtd. Adopting these
themes, we have addressed the problems of structure lgdram scratch, transfer

learning, and Web query disambiguation.

We first focused on the problem of transfer learning acroksgioaal do-
mains, addressing two different settings. In the first sgita sufficient amount of
target-domain data is available, and the goal is to revisaresterred structure so
that it obtains better predictive accuracy in the target aiom We developed an
algorithm that first diagnoses the source structure in daldetermine which parts
of it do not fit the target task. This diagnostic analysis th#ows revision to fo-
cus only on the incorrect portions of the structure, thugdpg up learning in the
target task. To find dependencies that are new to the targeaido our algorithm
incorporates ideas from inductive logic programming anglements relational

pathfinding, an effective procedure based on finding pattiseimelational graph of
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the data.

In the second transfer learning setting we consideredetalgmain data is
severely limited, consisting of information about a hahdfuentities, in the ex-
treme case just one. When such a limitation is placed on d#tstive learning
from scratch is infeasible and transfer learning is a nbapgaroach. We developed
a simple but effective technique that maps source knowléul¢jee target domain
by testing out potential predicate mappings on short-rageses whose correct-
ness can be directly evaluated on the available data. Ssfatesappings are then
used to map the remaining clauses. We demonstrated thasiwaély reasonable
accuracy can be attained from very limited data, and thatapproach is superior
to several baselines, as well as to a technique that is nditiypaddressing the

missing data aspect.

A second problem we addressed in this thesis is structuraihgafrom
scratch. This problem is important not only as a way to obsawwrce models for
transfer but also for modeling in stand-alone tasks. We Ildpeel a bottom-up
structure learner that starts by discovering a Markov ngiwemplate, a novel
data structure that encodes the dependencies among udditeuals. The Markov
network template then guides the search for clauses. Inatays our algorithm
can avoid some of the pitfalls of top-down approaches, ssdbal maxima and

plateaus.

In the final part of the thesis, we focused on a specific probtkeat of Web
query disambiguation, to demonstrate how by exploitingtrehs between entities,

we can compensate for a constraint on the amount of entagHép information
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that is available. We defined several ways of relating theisas of search engine
users and defined the structure of an MLN based on theseoredatWeights for
this structure were then learned from the data. We demdaedtthat our approach

outperforms several natural, and in some cases, strongirizsse

Overall, the contributions in this thesis have led to pregren structure
learning, a core aspect of successful modeling in mulsiti@hal domains, as well
as to progress on a practically significant application o $&Web query disam-
biguation. We hope that our work will lead to wider use of bottup learning in
the SRL community and to the introduction of SRL techniquesrtable advances
in new problems, such as ones in Web personalization, tivat thaditionally been

viewed as feature-vector tasks.
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Appendix 1

Complete Learning Curves of TAMAR

Figured 1.11 t6 115 present complete learning curves forabelts presented
in Sectio 3.2.2. The zeroth points are obtained by testiegperformance of the

MLN provided to the learner at the start.
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Figure 1.1: Learning curves in WebKB- IMDB for a) AUC and b) CLL.
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Figure 1.2: Learning curves in UW-CSE IMDB for a) AUC and b) CLL. Here
we additionally tested the performance of systems that daise the automatic
mapping but are provided with an intuitive hand-constrdatepping that maps
Student— Actor, Professor— Director, AdvisedBy/TempAdvisedBy» Worked-
For, Publication— MovieMember, Phase> Gender, and Positior: Genre.
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