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Abstract

In this work we present Cutting Plane In-

ference (CPI) for MAP inference in Markov
Logic. CPI incrementally solves partial
Ground Markov Networks, adding formulae
only if they are violated in the current so-
lution. We show dramatic improvements
in terms of e�ciency, and discuss scenarios
where CPI is likely to be fast.

1. Introduction

In this work1 we present and analyse a MAP infer-
ence algorithm for Markov Logic (ML), namely Cut-

ting Plane Inference (CPI) (Riedel, 2008), that ex-
ploits the redundancy inherent in many SRL models.
Often several ground features in the Ground Markov
Network encourage the same properties of a solution.
For example, in pairwise Entity Resolution tasks we
may encounter simple local formula (say, based on the
string distance of two names) that implicitly encourage
transitive solutions. Formulae that explicitly enforce
transitivity are hence often unnecessary.

2. Markov Logic

Markov Logic (Richardson & Domingos, 2006) is a Sta-
tistical Relational Learning language based on First
Order Logic and Markov Networks. It can be seen as a
formalism that extends First Order Logic to allow for-
mulae that can be violated with some penalty. From
an alternative point of view, it is an expressive tem-
plate language that uses First Order Logic formulae to
instantiate Markov Networks of repetitive structure.

In Markov Logic we call a set of weighted formulae a

1Note that this paper contains a summary of (Riedel,
2008), slightly updated results and a novel analysis of CPI.
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Markov Logic Network (MLN). Formally speaking, an
MLN L is a set of pairs (φ,w) where φ is a �rst order
formula and w a positive real weight.2 L assigns the
probability

p (y) =
1
Z

exp

 ∑
(φ,w)∈L

w
∑
c∈Cφ

fφ
c (y)

 (1)

to the set of ground atoms (aka possible world) y. Here
Cφ is the set of all possible bindings of the free vari-
ables in φ with the constants of our domain. fφ

c is a
feature function that returns 1 if in the possible world
y the ground formula we get by replacing the free vari-
ables in φ by the constants in c is true and 0 otherwise.
Z is a normalisation constant. Note that the above
distribution corresponds to the Ground Markov Net-

work where nodes represent ground atoms and factors
represent ground formulae.

3. Cutting Plane Inference

MAP inference in Markov Logic amounts to �nding a
set of hidden ground atoms ŷ with maximum a poste-

riori probability given a set of observed ground atoms
x and a Markov Logic Network L. This amounts to
�nding the y with maximal score

s (y,x) =
∑

(φ,w)∈L

∑
c∈Cφ

w · fφ
c (y,x) . (2)

Before we can present Cutting Plane Inference we
need to introduce two concepts. First, we de�ne the
set Separate (φ,y,x) for a formula φ, hidden ground
atoms y and observed ground atoms x, to be set of
variable bindings c so that φ [c] is false in the world
y ∪ x.

Second, to compactly represent the partial networks
generated during CPI we introduce the notion of a
partial grounding G = (Gφ)(φ,w)∈L that maps each

2We can convert formulae with negative weights to
negated formulae with positive weights.
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�rst order formula φ of an MLN L to a set of vari-
able assignments Gφ. A partial grounding G induces
a partial score

sG (y,x) =
∑

(φ,w)∈L

w
∑
c∈Gφ

fφ
c (y,x) . (3)

Algorithm 1 Cutting Plane Inference for ML (Riedel,
2008).

Require: MLN L, base solver BS, observation x,
initial grounding G0, maxIterations

1: i← 0
2: y′ ← 0
3: repeat

4: i← i + 1
5: y← solve

(
Gi−1,x

)
using base solver BS.

6: if s (y,x) > s (y′,x) then

7: y′ ← y
8: end if

9: for each (φ,w) ∈ L do

10: Gi
φ ← Gi−1

φ ∪ Separate (φ,y,x)
11: end for

12: until Gi = Gi−1 or i > maxIterations
13: return y′

Algorithm 1 shows CPI in pseudo-code. It needs a
propositional base solver as input�this could be any
MAP solver for Markov Networks. In a nutshell, it
starts by solving the initial grounding using the base
solver, then adding violated formulae, solving the next
grounding, and so forth. Notice that we return the
best solution generated during CPI; only for exact base
solvers this is guaranteed to be solution of the �nal
solution.

The loop in steps 9 and 10 �nds the ground formu-
lae Separate (φ,y,x) which are violated in the current
solution y ∪ x, and adds them to the current partial
grounding. In cutting plane algorithms this step is
usually called separation. In CPI separation amounts
to the evaluation problem and can be e�ciently solved
for a large class of formulae. We tackle it by using
a database representation of the atoms, and execute
database queries on this database. In practise we ob-
served that the cost of query evaluation was marginal
when compared to the cost of numeric optimisation.

We refer to our algorithm as Cutting Plane Inference
due to its resemblance to cutting plane algorithms for
Operations Research. These algorithms iteratively add
violated linear constraints (cuts) to an optimisation
problem. Our approach is therefore also close to re-
cent work that uses cutting plane algorithms for MAP
inference in the Marginal Polytope (e.g., by Sontag
and Jaakkola (2007)). However, by exploiting �rst or-

der information CPI scales up to problems with mil-
lions of nodes and edges; here the separation routines
of Sontag et al. would fail. Our �rst-order approach
also avoids the construction of the ground network�a
process that is very expensive and cannot be avoided
in propositional cutting plane algorithms. A further
advantage of CPI is the fact that we can plug-in any
Markov Network MAP algorithm as base solver.

CPI is also related to Lazy Inference (Poon et al.,
2008) in the sense that both instantiate edges only
when needed by a base solver. However, while Lazy
Inference provides edges whenever the base solver calls
for them, CPI is less generous: it requires the base
solver to run to completion on the current network
before new edges can be requested. This can have ad-
vantages when the base solver requires edges based
on some suboptimal moves (e.g., random moves in
MaxWalkSAT) that could be compensated after fur-
ther moves on the same problem (e.g., after some fur-
ther random moves that �nd a better con�guration).
Note that Lazy Inference has a practical disadvantage:
it requires the developer to change the implementation
of the algorithm to be made lazy. This is very di�cult
for complex software such as ILP solvers.

4. Empirical Results

The �rst task we apply CPI to is Semantic Role La-
belling (Carreras & Marquez, 2005), the task of identi-
fying and classifying the semantic arguments of pred-
icates in a sentence. The MLN we use for this prob-
lem is inspired by previous work on Semantic Role La-
belling. The size in terms non-local factors per prob-
lem instance is roughly 105. This size is a result of a
formula that forbids overlapping spans to be semantic
arguments.

Table 1 shows the e�ect of using CPI with two
types of base solver: Integer Linear Programming
and MaxWalkSAT (MWS) (with 1000 �ips and 10
restarts). We notice a dramatic reduction of ground
formulae that comes along with runtime improvements
of two orders of magnitude for Integer Linear Pro-
gramming, and slightly less for MWS. Also notice that
in case of the approximate MWS we in fact improve
(score) accuracy when using CPI.

Next we look at an MLN for citation matching (Singla
& Domingos, 2005). Here we are to �nd citation pairs
that refer to the same publication. In this case the ac-
tual Ground Markov Networks we consider have about
a million factors (and hundreds of thousands of nodes).
The main reason for networks being this large is a tran-
sitivity clause that requires A to match with C if A
matches with B and B with C.
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System Calls Time Size Score F1

MWS 1 5.7 1.3 105 0.762 0.74

ILP 1 4.6 1.3 105 0.834 0.79

CPI-MWS 2.24 0.11 8.6 100 0.829 0.79

CPI-ILP 2.25 0.065 8.6 100 0.834 0.79

Table 1. Semantic Role Labelling results. Calls to the
propositional optimiser, avg. solving time for each in-
stance (in seconds), number of ground formulae, linear
score (equation 2) , F1 measure. Averaged over the �rst
100 examples in WSJ test set.

System Calls Time Size Score F1

MWS 1 4.3 2.0 106 -890 0.21

ILP 1 60 2.0 106 N/A N/A

CPI-MWS 20 2.7 7.3 104 (364) 0.27

CPI-ILP 6.7 1.73 1.9 104 3030 0.72

Table 2. Citation Matching results. Columns as in table 1,
but times measured in minutes. Bracketed score for CPI-
MWS shows number of hard constraint violations.

Table 2 tells a similar story to table 1, at least for the
case of ILP. When applied to the full ground network,
our ILP solver failed to even return a solution, due
to the large memory requirements of the ILP version
of the Ground Markov Network. By contrast, with
CPI ILP becomes feasible, leading to exact results for
networks with millions of edges and nodes. Interest-
ingly, the time we need to �nd the exact solutions using
CPI-ILP is less than 50% of the time of MWS in the
full propositional network. However, note that MWS
alone performs poorly in this setting. This led CPI-
MWS to run astray, and so we terminated CPI after 20
iteration. This resulted in poor accuracy (and many
violated transitivity formulae).

5. Analysis

It can be easily shown that CPI inherits the accuracy
of its base solver (and is thus exact if its base solver
is), and that it converges in a �nite number of steps
for �nite domains (Riedel, 2008). However, so far the
general class of MLNs that can be e�ciently solved
by CPI has not been investigated. In this section we
try to sketch a �rst characterisation of this class. In
particular, we ask the question when the �nal Markov
Network of CPI will be de�nitely small.

We claim the following (and refer to (Riedel, 2009)
for a proof and more thorough analysis): assuming
an exact base solver and each solution during CPI to
be unique, then a ground formulae φ [c] can only be
instantiated during CPI if there exists a set of ground
formulae P that logically entails ¬φ [c]. Moreover, it

can also be shown that even if ¬φ [c] can be entailed, it
will de�nitely not be instantiated if the weights of the
formulae in P are relatively low compared to weights
of formulae that contradict P . Hence �nal networks
will be small if ground formulae cannot refute each
other, or cannot refute each other with con�dence.

In our citation matching example the above statement
means that if there is not much positive local evidence
for matched citations, CPI will only instantiate a small
subset of transitivity clauses. Why is this so? With-
out local evidence for matches we cannot prove the an-
tecedents of transitivity clauses. This in turn means
that we cannot refute these clauses, and hence CPI
will not instantiate them.

6. Conclusion

We have presented CPI, a MAP Inference algorithm
for Markov Logic that can dramatically improve e�-
ciency. CPI exploits the redundancy of a model by us-
ing complex factors only when they contradict prefer-
ences of the simple ones. The algorithm alternates be-
tween calling a Markov Network MAP solver of choice,
and performing �rst order query processing with re-
spect to the returned solution.

We show dramatic improvements in e�ciency for Se-
mantic Role Labelling and Entity Resolution. We also
brie�y discuss a scenario where CPI is guaranteed to
lead to small partial problems (and hence is likely to be
fast). In future work we seek to extend the idea of CPI
to marginal inference, combine it with other lifted in-
ference techniques (such as Lifted Belief Propagation)
and empirically compare CPI to Lazy Inference.
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