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Abstract. We address the problem of visual event recognition in surveil-
lance where noise and missing observations are serious problems. Com-
mon sense domain knowledge is exploited to overcome them. The knowl-
edge is represented as first-order logic production rules with associated
weights to indicate their confidence. These rules are used in combination
with a relaxed deduction algorithm to construct a network of grounded
atoms, the Markov Logic Network. The network is used to perform prob-
abilistic inference for input queries about events of interest. The system’s
performance is demonstrated on a number of videos from a parking lot
domain that contains complex interactions of people and vehicles.

1 Introduction

We consider the problem of event modelling and recognition in visual surveillance
and introduce an approach based on Markov Logic Networks ([1]) that naturally
integrates common sense reasoning with uncertain analyses produced by com-
puter vision algorithms for object detection, tracking and movement recognition.
We motivate and illustrate our approach in the context of monitoring a parking
lot, with the goal of matching people to the vehicles they arrive and depart in.

There are numerous frameworks for event recognition. In declarative ap-
proaches (e.g. [2]), events are represented with declarative templates. Events are
typically organized in a hierarchy, starting with primitive events at the bottom
and composite events on top. The recognition of a composite event proceeds in
a bottom-up manner. These approaches have several drawbacks. First, a miss or
false detection of a primitive event, which occurs frequently in computer vision,
especially in crowded or poorly illuminated conditions, often leads to irrecov-
erable failures in composite event recognition. Second, uncertainty is often not
modelled and so these methods are generally not robust to typical errors in image
analysis. In probabilistic frameworks, such as HMMs (e.g. [3]), or DBNs ([2]),
events are represented with probabilistic models. Event recognition is usually
performed using maximum likelihood estimation given observation sequences.
While these approaches provide robustness to uncertainty in image analysis,
their representations often lack flexibility (e.g. number of states or actors is
fixed) and hence it is difficult to use them in dynamic situations.
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In general, the problems of noise or missing observations always exist in real
world applications. Our contention is that common sense knowledge, specific to
the domain under consideration, can provide useful constraints to reduce uncer-
tainties and ambiguities. Having a good knowledge base (KB) and an effective
reasoning scheme helps to improve event recognition performance.

Technically, we address uncertainty in observations and representational rich-
ness of event specification by a combination of logical and probabilistic models.

1. Domain common sense knowledge is represented using first order logic state-
ments. Both negation and disjunction are allowed.

2. Uncertainty of primitive event detection is represented using detection prob-
abilities. Uncertainty of logical relations (including event models or logical
constraints) is represented with a real-valued weight set based on, for exam-
ple, domain knowledge.

3. Logical statements and probabilities are combined into a single framework
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Fig. 1. Overview of our system

Our system maintains an undirected network of grounded atoms which corre-
spond to events that have occurred in the video. At any moment, primitive
events are detected with associated detection probabilities. They are then used
to ground logical rules in the KB, which generally leads to generating more
grounded events. Next, these grounded logical rules are added to the Markov
network. The network parameters or structures are revised with these updates.
The marginal probability of any (composite) event can be determined using
probabilistic inference on this network. Fig. 1 shows an overview of our system.

2 Related Work

Visual event detection from video has a long history in computer vision. We re-
view here only approaches that are most relevant to ours. Logic has been used for
visual event recognition in a number of works. In [4], Rota et al presented an ele-
gant treatment for representing activities using declarative models. Recognition
was performed effectively using a constraint-satisfaction algorithm. In [5], Shet
et al used a multi-valued default logic for the problem of identity maintenance.
Default reasoning was conducted on a bi-lattice of truth values with prioritized
default rules. Identity maintenance rules are prioritized mainly based on domain
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knowledge. A continuous bi-lattice was used in [6] for human detection. Here,
instead of using a multi-valued logic, we use a combination of logic and proba-
bility to handle inexact inference including identity maintenance. Each level of
prioritization can be mapped to our framework using a rule weight.

The combination of probability and (first order) logic has been pursued exten-
sively in AI and led to the emergence of Statistical Relation Learning (SRL, [7]).
SRL representations often involve unrolled or grounded graphical models (di-
rected (Bayesian) as well as undirected (Markov) ones), which are constructed
using a frame-based or a logic-based approach. They have been used for hu-
man activity recognition (although not in vision-based systems). In [8], Liao et
al recognized human activities based on the information about locations they
visited provided by GPS sensors worn by users (location-based). Probabilistic
inference is performed on an unrolled Markov network formed from a Relational
Markov Network, which essentially encodes high-level domain knowledge. Rela-
tion weights can be learned using a MAP estimation technique. In [9], Pentney
et al recognized human activities based on objects used. The objects were RFID
tagged and identified using RFID readers worn by the users (object-use based).
Logical rules are grounded and linked to form a probabilistic network within a
single time slice. In general, these approaches are intrusive. They require users
to wear additional sensors. Therefore their application to general surveillance
tasks is limited. Here, we work with visual input and use common sense knowl-
edge to complement limitations in visual perception. Markov Logic Networks
were used to construct a DBN for activity recognition by Biswas et al in [10].
That work only addressed inaccuracy in logic statements, while ours addresses a
wider range of issues, including detection uncertainty, missing observations and
identity maintenance.

Approaches that are based on probabilistic grammars for event recognition
such as [11] typically use simpler rules than ours. For example, they do not allow
existential quantifiers, which are needed for dealing with missing observations
(Section 5.2). It is also difficult to express domain constraints such as ”a car can
only be driven by one person” using generative grammars. Furthermore, methods
to perform probabilistic propagation are better understood for graphical models
than for probabilistic grammars.

3 Sample Problem

We motivate our approach with the surveillance problem of monitoring a parking
lot and determining which people enter or leave in which cars (Fig. 2). In a
parking lot, cars of various shapes and sizes can park close together. Occlusion
is not only unavoidable but sometime severe. This leads to many difficulties in
tracking people, since their corresponding foreground blobs may change from
complete to fragmented or become totally missing as they move between parked
cars. It is often difficult to determine the exact moment a person enters a car,
or even which car a person enters. Pure declarative, bottom-up approaches (e.g.
[2], [4]) that rely on accurate capture of primitive events will not work well here.
Probabilistic action recognition (e.g. HMMs([3])) might fail as well since, locally,
an observation may be missing altogether. For more robust event recognition, we
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Fig. 2. A frame from a parking lot sequence and its corresponding foreground regions
detected using background subtraction. Here, parked cars introduce significant occlu-
sion and door openings lead to many false alarms.

propose to use common sense knowledge about the domain under consideration.
The knowledge base will contain rules that range from definite ones such as ”if
a car leaves, there must exist some person driving it” or ”a person can drive
only one car at any time” to weaker rules such as ”people walking together
usually enter the same car” or ”if a person puts a bag into the trunk of a
car, he or she is likely to enter that car”. We represent these rules using first
order logic augmented with probabilities to represent the degree of confidence
for each rule. Additionally, the recognition of actions or primitive events such
as ”walking together” or ”put a bag into a car” is uncertain. Probability theory
provides a convenient method to handle these also. We then need an approach
that combines logic and probabilistic elements in a coherent framework.

Briefly, we achieve this by using 1) first order logic formulae to represent
domain knowledge, 2) a real-valued weight to represent the confidence in each
logic rule, 3) probability to model uncertainty for primitive event and action
recognition, 4) a probabilistic logic network, namely the Markov Logic Network,
to connect (detected) ground atoms and to perform probabilistic inference (e.g.
determine the probability that a person enters some car, given the input se-
quences). The following sections discuss in detail these aspects for our particular
surveillance problem as well as for general surveillance contexts.

4 Background on Markov Logic Networks

Markov Logic Networks (MLN, [1]) are one type of the unrolled graphical models
developed in SRL([7]) to combine logical and probabilistic reasoning. In MLN,
every logic formula Fi is associated with a nonnegative real-valued weight wi.
Every instantiation of Fi is given the same weight. An undirected network, called
a Markov Network, is constructed such that,

– Each of its nodes correspond to a ground atom xk.
– If a subset of ground atoms x{i} = {xk} are related to each other by a

formula Fi, then a clique Ci over these variables is added to the network. Ci

is associated with a weight wi and a feature fi defined as follows

fi(x{i}) = 1, if Fi(x{i}) is true, (1)
= 0, otherwise .
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Thus first-order logic formulae in our knowledge base serve as templates to con-
struct the Markov Network. This network models the joint distribution of the set
of all ground atoms, X, each of which is a binary variable. It provides a means
for performing probabilistic inference.

P (X = x) =
1
Z

exp(
∑

i

wifi(x{i})). (2)

where Z is the normalizing factor, Z =
∑

X∈X exp(
∑

i wifi(x{i})). If φi(x{i}) is
the potential function defined over a clique Ci, then log(φi(x{i})) = wifi(x{i}).

Inference Based on the constructed Markov network, the marginal distribution
of any event given some evidence (observations) can be computed using proba-
bilistic inference. Since the structure of the network may be very complex (e.g.
containing undirected cycles), exact inference is often intractable. MCMC sam-
pling is a good choice for approximate reasoning ([1]). In MLN, the probability
that a ground atom Xi is equal to xi given its Markov blanket (neighbors) Bi is

P (Xi = xi|Bi = bi) =
exp(

∑
fj∈Fi

wjfj(Xi = xi, Bi = bi))

exp(
∑

fj∈Fi
wjfj(Xi = 0, Bi = bi)) + exp(

∑
fj∈Fi

wjfj(Xi = 1, Bi = bi))
.(3)

where Fi is the set of all cliques that contain Xi and fj is computed as in Eq. 1.
Basic MCMC (Gibb sampling) is known to have difficulty dealing with deter-

ministic relations, which are unavoidable in our case. It has been observed that
using simulated tempering ( [12]) gives better performance than the basic Gibb
sampling ([12]). Simulated tempering is a MC method that is closely related to
simulated annealing. However, instead of using some fixed cooling schedule, a
random walk is also performed in the temperature space whose structure is pre-
determined and discrete ([12]). These moves aim at making the sampling better
at jumping out of local minima.

5 Knowledge Representation

In this section, we will describe our approach to represent knowledge and its
associated uncertainty. In our framework, object states and their interactions
(including the so-called events, actions or activities as they are interchangeably
referred to in other work, e.g. [2], [4]) are all represented with first order logic
predicates. A predicate is intensional if its truth value (for a certain grounding
of its arguments) can only be inferred (i.e. cannot be directly observed) ([13]). A
predicate is extensional if its truth value can be directly evaluated by a low-level
vision module. It is strictly extensional if this is the only means to evaluate it
(i.e. it can only be observed and not inferred).
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5.1 Logical Representation

In [1], the Markov network is constructed using an exhaustive grounding scheme,
which can lead to an explosion in the number of ground atoms and network con-
nections. Most of them are irrelevant and create significant difficulties for infer-
ence. A more efficient scheme was proposed in [14], which essentially grounded
only clauses that can become unsatisfied using a greedy search. It is not clear
if this approach could handle dynamic domains that involve, for example, time
and location. Here, we represent our knowledge in the form of production rules,
production → conclusion, and use deduction to ground (and add to the Markov
network) only literals (including both positive and negative atoms) that are
possibly true.

In traditional deductive systems (e.g. [13]), production rules in the form of
Horn clauses are used extensively. However, Horn clauses cannot represent nega-
tions and disjunctions, which are often required to capture useful commonsense
knowledge. To increase our system’s representational ability, we allow the fol-
lowing rule forms,

(
∧

i ai) → b Definite (i.e. Horn) clauses are used to define a composite event
from sub-events (similar, for example, to multi-thread event definition in
[2]), causal and explanatory relationships between observations and under-
lying actions (e. g. use(Bowl) → make(Cereal) or at(Resstautrant) →
have(Dinner) in object-use based [9] and location-based frameworks [8])

(
∧

i ai)(
∧

j ¬bj) → c Many events can only be described with a rule that has neg-
ative preconditions, for example, at(C,S, t)∧¬stopped(C, t) → violate(C,S, t)
where C is a car and S is a stop sign. Identity maintenance ([5], [15]) also of-
ten leads to formulae with negative preconditions, for example, own(H1, Bag)∧
take(H2, Bag) ∧ ¬eq(H1,H2) → theft(H2, Bag).

(
∧

i ai) → ¬b This form is often used to describe an exclusion relation. For ex-
ample, the rule ”a person P belongs to only one group G” can be written as
belongto(G1, P ) ∧ ¬eq(G1, G2) → ¬belongto(G2, P ).

(
∧

i ai) → (
∨

j bj) Disjunctions are used when a single conclusion cannot be
made. For example, use(Cup) → (drink(Coffee) ∨ drink(Tea)). When it
fires, all atoms in the conclusion are added to the ground atom database.
Disjunctions also arise from existential quantifiers (next section).

These forms, of course, are not the most general ones in First Order Logic. How-
ever, practically, they are sufficiently rich to represent a wide range of common
sense knowledge and to capture complex events in surveillance domains.

5.2 Uncertainty Representation

Uncertainty is unavoidable in practical visual surveillance applications. We con-
sider two classes of uncertainty: logical ambiguity and detection uncertainty.
Their sources and ways to represent them are described below.
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Incomplete or Missing Observations Occlusion and bad imaging conditions
(e.g. dark, shadowed areas of the scene) are two common conditions that pre-
vent us from observing the occurrence of some actions. In some cases, even if a
unique conclusion cannot be made, some weaker (disjunctional) assertion might
still be possible. Rules with disjunctive effects are often needed then. For exam-
ple, the statement ”if a bag b is missing at some time interval t and location L,
then someone must have picked it up” could be formalized as missing(b, l, t) →
(∃p passBy(p, l, t) ∧ pickUp(p, b, t)). Here the action pickUp(p, b, t) can be in-
ferred when its direct detection is missed. This type of formulae involves an
existential quantifier and will be expanded to a disjunction of conjunctive clauses
when grounded. For example, suppose that passBy(P1, L, T ) and passBy(P2, L, T )
are true for two persons P1 and P2 (i.e. two persons P1 and P2 passed by when the
bag went missing), then the grounding of this rule would be missing(B,L, T ) →
(passBy(P1, L, T ) ∧ pickUp(P2, B, T )) ∨ (passBy(P2, L, T ) ∧ pickUp(P2, B, T )).
This expansion obviously is not suitable for infinite domains. However, in prac-
tice, most object domains are finite (e.g. number of people or cars is finite)
therefore the expansion is feasible for surveillance. As evidence arrives, previ-
ously expanded domains may need to be updated (section 6.1).

Non-perfect Logical Statements Common sense statements in the KB are
not always true. We use a real-value weight to represent the confidence of each
rule in the KB. Rules with absolute certainty, such as ”a person can drive only
one car at a time”, are given an infinite weight. In practice, such a hard clause is
”softened” with a maximum weight, MAXW , to facilitate the inference process.
Rules that are almost always true, such as ”a person interacts with only one
car”, are given strong weights. Weak weights are assigned to rules that describe
exceptions (i.e. situations that are possibly true but not common such as ”a
driver might enter a car from the passenger side”).

Extensional Evaluation Uncertainty The evaluation of an extensional pred-
icate, E, by the low-level vision module might return answers with absolute cer-
tainty or with some associated (detection) probability, pD(E = true). For the
first case, whether the result is true or false, we make E an evidence variable
and add it to the Markov network. For the second case, a method to integrate
E and its detection probability for high-level logical reasoning are needed.

One approach would be to add this grounded, single-atom clause, (E, w ∝
pD) and its complement, (E, w ∝ 1 − pD) to the Markov network. (Note that
using only one of these clauses is not sufficient). This way, the marginal prob-
ability, p(E = true), is fixed to pD. However, evidence from other sources may
change the probability p(E = true), especially when E is not strictly extensional.
Therefore, it would be better to add an observation variable O and use these two
formulae: (observe(O) → E,w ∝ pD) and (observe(O) → E, w ∝ 1 − pD). The
variable O has a fixed value that represents the corresponding measurement. It
is specific to this grounding. The predicate observe(O) will not take part in any
logical deduction and is always assumed true. This formulation allows evidence
from related sources (beside O) to have their effects on p(E = true).
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Extensional predicates can be of various kinds depending on the domain un-
der consideration. Two classes and their associated uncertainty that we consider
are object recognition and action detection (see section 7.1).

Identity Maintenance Identity maintenance is necessary when there exist
multiple identities that actually refer to the same object([5], [15]). In surveillance,
it is caused by lack of visual information (appearance, shape. . . ) to make unique
identity connections across observation gaps. Our approach to solve this problem
is similar to the one proposed in [15] for entity resolution in relational databases
([7]), with a slightly more concise formulation.

Identification of two objects A and B is represented by a predicate eq(A,B).
It comes with the following set of axioms (with infinite weights): 1) Reflex-
ive, eq(A, A); 2) Symmetry, eq(A, B) ↔ eq(B,A); 3) Transitivity, eq(A,B) ∧
eq(B, C) → eq(A, C); 4) Predicate Equivalence, P (X1, Y )∧eq(X1, X2) → P (X2, Y ),
(for two-ary predicates but can be similarly stated for n-ary predicates).

The equivalence predicate can be extensionally evaluated or intensionally in-
ferred. Extensional evaluation of eq(A,B) is done using appearance matching.
The probability p(eq(A,B) = true) is calculated based on a matching score.
Intensional deduction of eq(A,B) can be done using the above axioms and com-
monsense rules in the KB. Several prioritized rules in [5], such as ”possession of
some special objects (e.g. car keys) determines owners’ identity”, can be used
here, where each prioritizing level is mapped to a corresponding weight.

6 Network Construction

This section describes our deduction algorithm that uses the production rules
in the KB (section 5.1) to deduce grounded atoms for the Markov network. Due
to noise or incompleteness in observations, some events that have not actually
occurred might get grounded and added to the ground atom database (ADB).
Our procedure is thus a relaxed version of logical deduction and may not be
logically consistent.

6.1 Deduction Algorithm

Typically, with definite clauses, deduction is performed via forward chaining.
In our system, logic rules take richer forms that require us to additionally deal
with negative preconditions and disjunctive conclusions. Following are several
preliminaries for our algorithm.

Close World Assumption(CWA) Since it is usually not convenient and
sometimes impossible to detect (consistently) events that are not happening,
such as the notstopped(Ci, t) event (for all cars at all time points), the CWA
is used to check for negative preconditions: what is not currently known to be
true is assumed false. Then, forward chaining is still used, but is divided into
two phases: the first for rules that do not have negative preconditions and the
second for the remaining rules. This is to delay, for example, the conclusion that
¬a is true using the CWA until all possible ways of deducing a have been tried.
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Context-dependent Preconditions Consider the predicate nearBy(P, loc, t)
in the formula happenAt(E, loc, t)∧nearBy(P, loc, t) → witness(E, P ). It would
be cumbersome to evaluate nearBy(P, loc, t) and add it to the ADB for all people
P , all locations loc and all times t. Instead, it should only be evaluated after
happenAt(E, loc, t) is true with specific bindings of loc and t. In this case, the
satisfaction of the first precondition serves as the context that enables the lazy
evaluation of the second one. Generally, we use lazy evaluation for an extensional
predicate when it would be expensive to evaluate otherwise due to the large size
of the domain (e.g. ones that involve time or location).

Disjunction Domains Generally, in our system, disjunctions need no special
treatment. However, when they are in the scope of an existential quantifier, do-
main expansion and several bookkeeping steps are required. In the missing bag
example in section 5.2, the predicate passBy(P, L, T ) limits P to the set {P1, P2}
and the existential quantifier is expanded over the entirety of this domain. In gen-
eral, we eliminate the existential quantifier by considering that the conclusion has
two parts, one for defining the object domain (passBy(P,L, T )) and the other for
describing the actual conclusion (pickUp(P,B, T )) In other words, our general
production rule would be precondition → (∃x domaindefx ∧ conlusionx). An
empty clause domaindefx implies that the domain consists of all instantiations
of x. During deduction, we may need to expand domains as new objects that
satisfy domain predicates are discovered. In such cases, the previously grounded
formula is replaced with the new one and the network is modified with the new
clique.

Ground Atom and Formulae Deduction

◦ Input ADB - ground atom database; KBpos - set of definite rules; KBneg - set of
rules that have negative preconditions

◦ Output ADB - with new ground atoms added; GS - the set of grounded clauses.

Repeat until no new ground atom is generated

1. Repeat until no new atom
For ∀R ∈ KBpos, instantiate R w. r. t. ADB and for each instantiation r,
(a) If all context-independent preconditions are satisfied, then evaluate all context-

dependent preconditions and add the newly evaluated atoms to ADB.
(b) If all succeeded, get effects and add to ADB.
(c) GS ← GS ∪ r .

2. Similar to step 1 for R ∈ KBneg with CWA added during instantiation of rules.

Fig. 3. The algorithm for deducing new ground atoms

The deduction procedure is shown in Fig. 3. In step 1(a), when grounding a
clause, if context-independent preconditions are satisfied then context-dependent
predicates will be extensionally evaluated. Instances that are evaluated to true
will be added to the ADB. In step 1(b), all atoms in the conclusion as well
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as their complemented literals (i.e. E and ¬E) are added to the ADB. If an
existential quantifier is involved, we need to check and update, if necessary, its
previously expanded domain. Step 2 essentially repeats step 1 with the addition
of the CWA. For a precondition, ¬E, if we are unable to observe or deduce E,
¬E is assumed true. If the related clause ends up being grounded (i.e. all other
preconditions are evaluated to true) then the literal ¬E is added to the ADB.

All ground clauses are then added to the Markov network. This construction
procedure is performed whenever there is a new event generated. It can be done
incrementally by deriving only deductions that originate from new events.

7 Implementation and Experiments

7.1 Implementation

We describe here some basic elements needed to address the parking lot applica-
tion: object set, predicate set, their evaluation and the KB. Three types of objects
are considered: cars (denoted as Ci), humans (Hi) and locations (Li). Time is
represented using atomic intervals with granularity of nI frames (e.g. nI = 30,
approximately 2 seconds). Each primitive event or action is assumed to be true
within one time interval. Below, time labels are omitted for clarity. Our vo-
cabulary consists of the following predicates: extensional, context-independent,
inTrunkZone(C, H), inLeftZone(C,H), inRightZone(C, H), disappear(H, L),
equal(H1,H2), shakeHand(H1, H2) and carLeave(C); extensional, context-depen-
dent, openTrunk(C,H); intensional: enter(C, H) and drive(C, H). Additionally,
we have measurement objects and their corresponding predicates (Sec. 5.2).

Background subtraction, human detection and tracking (see e.g. [16]) tech-
niques were first applied to identify and track object locations. The orientation
and direction of each car were estimated simply using its corresponding fore-
ground blob and parking lot layout. Fig. 4.1 shows the estimated layouts of the
three detected cars during one experiment.

A spatial predicate, for example, inTrunkZone(C, H), is generated when the
foot location of person, H, intersects significantly with the trunk zone of the car,
C, for a sufficiently long period of time; disappear(H,L) is generated when we
lose track of H. Identity maintenance predicates are evaluated using the distance
between color histograms of the two participating objects. shakeHand(H1,H2)
is modeled by analyzing the connecting area between two standing separate per-
sons. openTrunk(C, H) is evaluated base on the motion pattern in the trunk
area of car C. The rules that constitute our knowledgebase are listed in the
appendix. The maximum weight, MAXW , is set to be proportional to the net-
work’s size (number of ground atoms [12]). The range 0−MAXW is uniformly
discretized to five levels corresponding to very strong, strong, medium, weak
and very weak certainties. These values are assigned to rules according to our
confidence in them, based on domain knowledge.

7.2 Experiments

We analyzed a set of parking lot videos that involve a number of people entering
different cars as listed in Table 1. A typical scenario is as follows. Initially, three
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Table 1. Four sequences used in our experiments

] of people ] of cars Durations
seq 1 6 3 2 min 10 sec
seq 2 5 3 3 min
seq 3 4 2 1min 30 sec
seq 4 6 3 4 min

cars, C1, C2 and C3, park next to each other. A person H1 appears, walks
up to C2, opens its trunk (Fig. 4.2), puts something in, closes the trunk and
then disappears between C1 and C2 (Fig. 4.3). Then two persons, H2 and H3,
walk close to each other near the parked cars. They shake hands (Fig. 4.4) and
disappear between C2, C3 and around the left of C3 respectively (Fig. 4.5).
Person H4 walks to C1 and disappears from the passenger side of C1 (Fig. 4.5).
A person H5 follows a similar path (Fig. 4.6). Person H6 walks to the cars and
disappears between C2 and C3 (Fig. 4.7). Then C1 pulls out and leaves. Finally,
C2 and C3 follow in order (Fig. 4.8). This scenario consists of a number of
interesting interactions and we would like to query the system about who entered
or drove which car. The challenges arise mostly due to noise and occlusion, which
lead to loss of track well before a person enters a car.

1 2 3 4

5 6 7 8

Fig. 4. 1) Estimated layouts of the parked cars. 2-8) Key frames from the scenario.
Foreground and human detection results are also shown. Irrelevant people and cars are
removed.

As the scenario unfolds, new events are generated and our ground net-
work evolves accordingly. We can query our system at any instant of time.
Here, we ran queries after all cars had departed. Detection probabilities for
openTrunk(C2, H1) and shakeHand(H2,H3) were respectively 0.9 and 0.5. Iden-
tity confusion is not significant so no related ground atom is generated. Fig. 5
shows the results for our queries, the probabilities p(enter(c, h) = true) and
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p(drive(c, h) = true) for all cars Ci’s and human Hi’s. These results can be

Fig. 5. Right, probabilities of entering cars for individual persons, p(enter(c, h) =
true). Left, probabilities of driving cars, p(drive(c, h) = true). Darker means being
lower in value

explained intuitively as follows. Person H1 disappeared between car C1 and C2,
so he could have equally entered either of them (with p = 0.5). But since he was
observed to open C2’s trunk, the probability that he entered C2 increased to
0.86. Person H2 could have entered either C2 or C3 (each with p = 0.5). But he
had been detected shaking hands with H3 (and so probably saying ”goodbye”),
who entered C3 with high certainty. Hence, the probability of H2 entering C3

was reduced and entering C2 was increased. However, since the detection prob-
ability was not very high (p = 0.5), the increase was not as much as for the
first person. Persons H3, H4 and H5 entered cars C3, C1 and C1 respectively
with high certainties since there was only a single car close to them when they
disappeared. Person H6 disappeared between cars C1 and C3. Since there is no
further supporting evidence, the probabilities for entering C1 and C3 should be
the same. The observed discrepancy is due mainly to sampling approximation.

H1 and H3 drove C2 and C3, respectively, with high certainty since they
had been observed to enter their cars from the driver side and there was no
competing alternative. For car C1, H4 and H5 were observed to enter it from
the passenger (right) side. The only person who could possibly enter it from
the driver side was H1. But it was strongly believed H1 entered and drove C2.
Hence, no one entered C1 from the driver side. This led to the conclusion that
either H4 or H5 had moved from the passenger side to drive C1. This reasoning
was made possible because of the low-weight rule 5, which states that, although
unlikely, drivers can enter a car from the passenger side (the driver side may be
blocked). In general, this type of rule is added to increase the system’s ability to
handle exceptional cases. They bear some of the flavor of default reasoning in the
sense that in the absence of supporting evidence for ”normal” rules, rules with
low weights will be activated to explain the situation under consideration. Note
that rule 5 was also applied to other persons, such as H2 and H6, but produced
negligible effects since competing hypotheses were much stronger. Therefore, the
probabilities that H2 and H6 drove any car were still close to zero.

In the initial querying, our system was able to conclude that either H4 or
H5 drove car C1 but was unable to determine which of them did. Consider
adding to the KB a very weak rule stating that among the persons entering
a car from the passenger side, whoever enters it first is its driver (no new ex-
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tensional predicate evaluation is needed). When we do this and re-evaluate the
queries, p(drive(C1,H4) = true) increased to 0.60 while p(drive(C1,H5) = true)
dropped to 0.23, which matched the observation that H4 entered C1 before H5

and drove it away. This example is intended to illustrate that domain knowledge
can be easily added to our system to improve its performance. This would not
be so easy in a purely logical system, because a significant amount of consistency
checking is required before admitting a new piece of knowledge. Also, it would
not be straightforward in a purely probabilistic system, since adding complicated
structures involves cumbersome changes to the internal structure of the system.

Our system is implemented using C++ and runs in Windows and Cygwin
on an Intel Pentium Dual-Core 1.6 GHz machine. The average running time for
background subtraction, human detection and object tracking, on 640x480 RGB
frames, are 5 frames per second. Average running time when performing inference
for all queries presented here is approximately fifteen seconds (maximum number
of MCMC step is set to 5000).

8 Discussion

We described how a combination of a probabilistic graphical model, the Markov
Logic network, and first-order logic statements can be used for event recogni-
tion in surveillance domains, where unobservable events and uncertainties in
detection are common. Logic provides a convenient mechanism to utilize do-
main knowledge to reason about the unobservable. Probabilistic models give us
a coherent framework to deal with uncertainty. The combination brings us the
ability to capture interesting interactions in complex domains.

Obtaining a sufficient and efficient knowledge base (KB) is important to
our recognition performance. This issue is also receiving increasing attention in
the area of human activity understanding([9], [8]). Approaches that use efforts
from open communities to build common sense KB have been proposed such as
Open Common Sense and Open Indoor Initiatives ([17], [18]). Large databases
of rules are now publicly available([17]). Automated rule extraction and weight
learning from them have been attempted (e.g. [9]). At its current stage, for visual
surveillance, rules and facts collected from such open databases are more often
than not irrelevant and not useful. For example, a query for ”parking lot” would
output relations such as it is ”a place for parked cars”, ”would be hot in the
summer”, ”may or may not be empty”. . . ([17]). However, as these knowledge
bases grow and, possibly, specialize ([18]), their application to our framework
seems promising. Exploiting them is part of our future investigation.
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A Logic Rules

List of rules and their corresponding weights used for the parking lot problem (see
problem description in Sec. 3).

1. If a person disappears, he/she enters a nearby car, w = 4
5
MAXW

disappear(h)→ (∃c (inLeftZone(c, h) ∨ inRightZone(c, h)) ∧ enter(c, h))
2. If a person opens the trunk of a car, he/she will (likely) enter that car

disappear(h) ∧ openTrunk(c, h)→ enter(c, h), w = 4
5
MAXW

3. A person enters only one car: enter(c1, h) ∧ ¬equal(c1, c2) → ¬enter(c2, h), w =
MAXW (if h gets into c temporarily and gets out of it, h is not considered to have
entered c, just being temporarily occluded)

4. A person entering a car c from the left (driver) side will (likely) drive c
inLeftZone(c, h) ∧ enter(c, h)→ drive(c, h), w = 4

5
MAXW

5. A person entering a car c from the right (passenger) side will (less likely) drive c
inRightZone(c, h) ∧ enter(c, h)→ drive(c, h), w = 1

5
MAXW

6. Two persons shaking hand with each other will (likely) not enter the same cars.
shakeHand(h1, h2) ∧ enter(c1, h1)→ ¬enter(c1, h2), w = 4

5
MAXW

7. For a car to drive away, it needs a driver: carLeave(c) → (∃ h enter(c, h) ∧
drive(c, h)), w = MAXW

8. A car has only one driver: drive(c, h1) ∧ ¬equal(h1, h2) → ¬drive(c, h2), w =
MAXW

9. A person can drive only one car: drive(c1, h)∧¬equal(c1, c2)→ ¬drive(c2, h), w =
MAXW

10. A person has to enter a car to drive it: drive(c, h)→ enter(c, h), w = MAXW


