Lifted First-Order Belief Propagation

Parag Singla and Pedro Domingos


Unifying first-order logic and probability is a long-standing goal of AI, and in recent years many representations combining aspects of the two have been proposed. However, inference in them is generally still at the level of propositional logic, creating all ground atoms and formulas and applying standard probabilistic inference methods to the resulting network. Ideally, inference should be lifted as in first-order logic, handling whole sets of indistinguishable objects together, in time independent of their cardinality. Poole (2003) and Braz et al. (2005, 2006) developed a lifted version of the variable elimination algorithm, but it is extremely complex, generally does not scale to realistic domains, and has only been applied to very small artificial problems. In this paper we propose the first lifted version of a scalable probabilistic inference algorithm, belief propagation (loopy or not). Our approach is based on first constructing a lifted network, where each node represents a set of ground atoms that all pass the same messages during belief propagation. We then run belief propagation on this network. We prove the correctness and optimality of our algorithm. Experiments show that it can greatly reduce the cost of inference.


Paper (PDF)