next up previous
Next: About this document ... Up: The Alchemy System for Previous: 7 Relational Decision Theory

Bibliography

1
P. J. Acklam.
An algorithm for computing the inverse normal cumulative distribution function.
2003.
http://home.online.no/~pjacklam/notes/invnorm/impl/misra/normsinv.html.

2
H. Kautz, B. Selman, and Y. Jiang.
A general stochastic approach to solving problems with hard and soft constraints.
In D. Gu, J. Du, and P. Pardalos, editors, The Satisfiability Problem: Theory and Applications, pages 573-586. American Mathematical Society, New York, NY, 1997.

3
S. Kok and P. Domingos.
Learning the structure of Markov logic networks.
In Proceedings of the Twenty-Second International Conference on Machine Learning, pages 441-448, Bonn, Germany, 2005. ACM Press.

4
S. Kok and P. Domingos.
Learning Markov logic network structure via hypergraph lifting.
In Proceedings of the Twenty-Sixth International Conference on Machine Learning, Montreal, Canada, 2009. ACM Press.

5
S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd, and P. Domingos.
The Alchemy system for statistical relational AI.
Technical report, Department of Computer Science and Engineering, University of Washington, Seattle, WA, 2007.
http://alchemy.cs.washington.edu.

6
E. Marinari and G. Parisi.
Simulated tempering: A new Monte Carlo scheme.
Europhysics Letters, 19:45-458, 1992.

7
A. Nath and P. Domingos.
A language for relational decision theory.
In In Proceedings of the Sixth International Workshop on Statistical Relational Learning, Leuven, Belgium, 2009.

8
H. Poon and P. Domingos.
Sound and efficient inference with probabilistic and deterministic dependencies.
In Proceedings of the Twenty-First National Conference on Artificial Intelligence, pages 458-463, Boston, MA, 2006. AAAI Press.

9
M. Richardson and P. Domingos.
Markov logic networks.
Machine Learning, 62:107-136, 2006.

10
S. Russell and P. Norvig.
Artificial Intelligence: A Modern Approach, chapter 8.
Prentice Hall, Upper Saddle River, NJ, 2002.
http://aima.cs.berkeley.edu/lisp/doc/overview-LOGIC.html.

11
P. Singla and P. Domingos.
Discriminative training of Markov logic networks.
In Proceedings of the Twentieth National Conference on Artificial Intelligence, pages 868-873, Pittsburgh, PA, 2005. AAAI Press.

12
P. Singla and P. Domingos.
Memory-efficient inference in relational domains.
In Proceedings of the Twenty-First National Conference on Artificial Intelligence, Boston, MA, 2006. AAAI Press.

13
P. Singla and P. Domingos.
Lifted first-order belief propagation.
In Proceedings of the Twenty-Third National Conference on Artificial Intelligence, Chicago, IL, 2008. AAAI Press.

14
J. Wang and P. Domingos.
Hybrid Markov logic networks.
In Proceedings of the Twenty-Third National Conference on Artificial Intelligence, Chicago, IL, 2008. AAAI Press.
To appear.

15
W. Wei, J. Erenrich, and B. Selman.
Towards efficient sampling: Exploiting random walk strategies.
In Proceedings of the Nineteenth National Conference on Artificial Intelligence, San Jose, CA, 2004. AAAI Press.

16
C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal.
Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization.
ACM Transactions on Mathematical Software, 23(4):550-560, 1997.



Marc Sumner 2010-01-22