
Unsupervised Semantic Parsing (USP)
User Guide

Hoifung Poon
hoifung@cs.washington.edu

September 30, 2009

1 Introduction

In the following sections, we will provide step-by-step instructions for using the
USP system as described in [2] in unsupervised semantic parsing and question
answering. Throughout this document, we will assume that you are at the directory
where you unpackusp-code.tar.gz, and we will use the experiments in [2]
as a running example, which apply USP to the GENIA dataset [1]and answer
questions about biological entities and relations.

2 Files Included

poon09.pdf: the paper on unsupervised semantic parsing and the USP system.

questions.txt: the questions used in the question-answering evaluation.

usp.eval: the answers extracted by the USP system and labels.

usp-code.tar.gz: the USP code archive, which includes the following files:

usp.jar: Java executable for USP.

src/: source code for USP.

genia/: default data directory containing the input files for replicating the USP
experiments in [2]. It contains raw text and syntactic analyses (morphologies
and Stanford dependencies) of 1999 PubMed abstracts in GENIA [1].

results/: default directory for the output of USP.

eval/: default directory for the question files.

1



3 Input To USP

The input to USP consists of syntactic analyses of source text. In particular,
USP assumes that the data directory (genia in our example) contains three sub-
directories:

text/ contains the raw text files.

morph/ contains input tokens, stems and POS tags.

dep/ contains the Stanford dependencies obtained with the format of collapsedTree.

4 Unsupervised Semantic Parsing

To run USP with the default directories, run:

java -mx20000m -cp usp.jar semantic.Parse genia results

This will generate the following files inresults:

genia.mln contains counts tallied from the MAP parse, which implicitly repre-
sent the learned parameters. Each cluster starts with a linecontaining the
unique ID along with core forms and counts. It is followed by anumber of
argument types, each of which consists of three lines: first the ID and counts
for various argument numbers, second the argument forms andcounts, third
the argument clusters and counts.

genia.parse contains the MAP semantic parses. Every sentence is partitioned
into subformulas, each of which is specified by four lines: first the unique
ID (docId+sentenceId+partId) and the text fragment, second the cluster ID
and core form, third the ID of the parent subformula and cluster, fourth the
argument type ID along with the argument form and ID.

genia.clustering contains the core forms of non-unit clusters. Each cluster is
represented by a line containing the core forms and counts.

The current implementation requires substantial amount ofmemory. With heap
size of 20GB, It takes about 20 minutes on the GENIA dataset ona 64-bit linux
machine with eight cores (Intel Xeon 2.3GHz). With a smallerheap size (e.g. -
mx8000m), the running time is substantially longer (e.g., 80 minutes). Running
USP on the Penn-Treebank WSJ data takes about 50 minutes on the same machine
and requires about 25GB of memory. Running USP on a 32-bit machine will result

2



in out-of-memory error due to heap size limit. In future work, we will seek to
reduce memory requirement per processor by making computation distributed.

The exponential priors can be specified through optional parameters prior-
NumParam and priorNumConj. For a full list of options, run the program without
any parameter.

5 Question Answering

To replicate the question answering experiment with the learned model and MAP
parses, run

java -cp usp.jar eval.USP eval results genia

This assumes thateval/ contains the question files, andresults/ contains the
learned model and parses. The output consists of the answersextracted by USP for
the questions. Currently, our implementation only handlessimple factoid questions
as specified in the paper.

References

[1] Jin-Dong Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi Tsujii. GENIA corpus
- a semantically annotated corpus for bio-textmining.Bioinformatics, 19:180–
82, 2003.

[2] Hoifung Poon and Pedro Domingos. Unsupervised semanticparsing. InPro-
ceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, pages 1–10, Singapore, 2009. ACL.

3


