
Derivation of LHL’s Log-Posterior

In the MLN defining the prior component of the posterior probability, there are two rules. The first rule
has infinite weight, and it states that each symbol belongs to exactly one cluster. The second rule has negative
weight −∞ < −λ < 0, and it penalizes the number of cluster combinations. From that MLN, we get

P ({Γ}) =
exp

(
∞ · n{Γ} − λm{Γ}

)
Z

=
exp

(
∞ · n{Γ} − λm{Γ}

)∑
{Γ}′ exp

(
∞ · n{Γ}′ − λm{Γ}′

) (1)

where Z is the partition function; n{Γ} and m{Γ} are respectively the number of true groundings of the first
and second rules for cluster assignment {Γ}.

We first consider the case where the first rule is violated in {Γ}, i.e., there is a symbol that does not
belong to exactly one cluster. Note that there is a cluster assignment in which the first rule is not violated,
specifically, the one where each symbol is in its own cluster. Let this cluster assignment be {Γ}u. Rewriting
Equation 1, we get

P ({Γ}) =
exp

(
−λm{Γ}

)
exp

(
∞ · (n{Γ}u − n{Γ})− λm{Γ}u

)
+
∑

{Γ}′\{Γ}u exp
(
∞ · (n{Γ}′ − n{Γ})− λm{Γ}′

) .
(2)

Since n{Γ} < n{Γ}u , 0 < λ < ∞, and 0 ≤ mΓu < ∞, exp
(
∞ · (n{Γ}u − n{Γ})− λm{Γ}u

)
= ∞.

Consequently, the denominator of Equation 2 is ∞, and P ({Γ}) = 0. Thus when the first rule is violated,
the posterior P ({Γ}|D) = 0, and logP ({Γ}|D) = −∞.

Next we consider the case where the first rule is not violated in {Γ}. We divide the numerator and
denominator of Equation 1 by exp

(
∞ · n{Γ}

)
. Let {Γ}′′ be a cluster assignment in the summation of Z.

When {Γ}′′ violates the first rule, its contribution to the summation is zero. This is because n{Γ}′′ < n{Γ}
and exp(∞· (n{Γ}′′ − n{Γ})− λm{Γ}′′) = 0. When {Γ}′′ does not violate the first rule, n{Γ}′′ = n{Γ}, and
exp(∞ · (n{Γ}′′ − n{Γ})− λm{Γ}′′) = exp(−λm{Γ}′′). Consequently, we can write Equation 1 as

P ({Γ}) =
exp

(
−λm{Γ}

)∑
{Γ}′′ exp

(
−λm{Γ}′′

) =
exp

(
−λm{Γ}

)
Z ′

(3)

where the summation in the denominator is over cluster assignments that do not violate the first rule.
Taking logs, we get

logP ({Γ}) = −λm{Γ} +K (4)

where K = − log(Z ′) is a constant.
Next we derive the likelihood component of the posterior probability. Since each symbol xi belongs to

exactly one cluster γi, each ground atom r(x1, . . . , xn) is in exactly one cluster combination (γ1, . . . , γn).
Let Gr(x1,...,xn) be a set containing groundings of the atom prediction rules and the (single) grounding of
the default atom prediction rule that have ground atom r(x1, . . . , xn) as their consequents. (An antecedent
and consequent respectively appear on the left and right of the implication symbol⇒.) Suppose the cluster
combination (γ1, . . . , γn) to which r(x1, . . . , xn) belongs contains at least one true ground atom. Then there
is exactly one grounded atom prediction rule in Gr(x1,...,xn) whose antecedent is true. The antecedents of
all other rules in Gr(x1,...,xn) are false, and the rules are trivially true. Similarly, when cluster combination
(γ1, . . . , γn) does not contain any true ground atom, there is exactly one grounded default atom prediction
rule in Gr(x1,...,xn) whose antecedent is true, and all other rules have false antecedents and are trivially true.

From the MLN defining the likelihood component, we get
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P (D|{Γ}) =
exp

(∑
i∈F

∑
j∈Gi

wigj(D)
)

Z
(5)

where Z is the partition function (different from that of Equation 1); F is a set containing all atom prediction
rules and the default atom prediction rule; Gi and wi are respectively the set of groundings and weight of the
ith rule in F ; and gj(D) = 1 if the jth ground rule in Gi is true and gj(D) = 0 otherwise.

In the numerator of Equation 5, we sum over all grounded rules. We can rewrite the equation by iter-
ating over ground atoms r(x1, . . . , xn), and summing over grounded rules that have r(x1, . . . , xn) as their
consequents.

P (D|{Γ}) =
exp

(∑
r(x1,...,xn)∈D

∑
j∈Gr(x1,...,xn)

wjgj(D)
)

Z
(6)

where Gr(x1,...,xn) is a set containing groundings of the atom prediction rules and the single grounding of the
default atom prediction rule that have ground atom r(x1, . . . , xn) as their consequents; and wj is the weight
of the jth rule in Gr(x1,...,xn),

In Gr(x1,...,xn), there is exactly one grounded rule whose antecedent is true. All other grounded rules
have false antecedents, and are trivially true in all worlds. Such rules cancel themselves out in the numerator
and denominator of Equation 6. Hence we only need to sum over grounded rules whose antecedents are true.
We can write Equation 6 as

P (D|{Γ}) =
exp

(∑
r∈R

∑
cr∈Cr

∑
j∈Fcr

wcr
gj(rj(x1, . . . , xn))

)
Z ′

(7)

where R is a set of predicates; Cr is a union of cluster combinations containing at least one true ground-
ing of predicate r, and a default cluster combination containing only false groundings of r; Fcr

is a set of
grounded rules with cluster combination cr in their true antecedents and a grounding of r as their conse-
quents; wcr is the weight of the atom predication rule or default atom predication rule that has cr in its
antecedent; rj(x1, . . . , xn) is the ground atom appearing as the consequent of rule j; gj(rj(x1, . . . , xn)) = 1
if rj(x1, . . . , xn) is true; gj(rj(x1, . . . , xn)) = 0 otherwise; and Z ′ is the partition function.

Because a ground atom r(x1, . . . , xn) is in exactly one cluster combination cr, and appears in exactly
one grounded rule with cr in its the antecedent, we can factorize Z ′, and write Equation 7 as

P (D|{Γ}) =

∏
r∈R

∏
cr∈Cr

∏
j∈Fcr

exp (wcr
gj(rj(x1, . . . , xn)))∏

r∈R
∏
cr∈Cr

∏
j∈Fcr

∑
rj(x1,...,xn)∈{0,1} exp (wcr

gj(rj(x1, . . . , xn)))

=
∏
r∈R

∏
cr∈Cr

∏
j∈Fcr

exp (wcr
gj(rj(x1, . . . , xn)))∑

rj(x1,...,xn)∈{0,1} exp (wcr
gj(rj(x1, . . . , xn)))

=
∏
r∈R

∏
cr∈Cr

∏
j∈Fcr

exp (wcrgj(rj(x1, . . . , xn)))
1 + exp(wcr

)

=
∏
r∈R

∏
cr∈Cr

(
exp(wcr )

1 + exp(wcr
)

)tcr
(

1
1 + exp(wcr

)

)fcr

(8)

where tcr
and fcr

are respectively the number of true and false ground r(x1, . . . , xn) atoms in cluster com-
bination cr.
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By differentiating Equation 8 with respect to wcr , setting the derivative to 0, and solving for wcr , we
find that the resulting equation is maximized when wcr

= log(tcr
/fcr

). Substituting wcr
= log(tcr

/fcr
) in

Equations 8, and taking logs, we get

logP (D|{Γ}) =
∑
r∈R

∑
cr∈Cr

tcr log
(

tcr

tcr
+ fcr

)
+ fcr log

(
fcr

tcr
+ fcr

)
. (9)

Adding smoothing parameters αr and βr, we get

logP (D|{Γ}) =
∑
r∈R

∑
cr∈Cr

tcr log
(

tcr
+ αr

tcr + fcr + αr + βr

)
+ fcr log

(
fcr

+ βr
tcr + fcr + αr + βr

)
. (10)

(In our experiments, we set αr + βr = 10 and αr

αr+βr
to the fraction of true groundings of r.) Separating

the default cluster combination c′r containing only false groundings of r from the set of cluster combinations
C+
r containing at least one true grounding of r, we obtain

logP (D|{Γ}) =∑
r∈R

fc′r log
(

fc′r + βr

fc′r + αr + βr

)
+
∑
cr∈C+

r

tcr
log
(

tcr
+ αr

tcr + fcr + αr + βr

)
+ fcr

log
(

fcr
+ βr

tcr + fcr + αr + βr

) .(11)

logP ({Γ}|D) = logP ({Γ})+ logP (D|{Γ})+K ′ where K ′ is a constant. Using the values of the prior
and likelihood, we get

log(P ({Γ}|D)

=


−∞ if there is a symbol that is not in exactly one cluster∑
r∈R

fc′r log
(

fc′
r

+βr

fc′
r

+αr+βr

)
+
∑
cr∈C+

r

tcr
log
(

tcr +αr

tcr +fcr +αr+βr

)
+ fcr

log
(

fcr +βr

tcr +fcr +αr+βr

)− λm{Γ} +K ′′ otherwise

where K ′′ = K +K ′ is a constant. (When comparing candidate cluster assignments to find the one with the
best log-posterior, we can ignore K ′′ because it is a constant.)
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