
Learning Markov Logic Network Structure via Hypergraph Lifting

Stanley Kok koks@cs.washington.edu
Pedro Domingos pedrod@cs.washington.edu

Department of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA

Abstract
Markov logic networks (MLNs) combine logic and
probability by attaching weights to first-order
clauses, and viewing these as templates for fea-
tures of Markov networks. Learning MLN struc-
ture from a relational database involves learn-
ing the clauses and weights. The state-of-the-art
MLN structure learners all involve some element
of greedily generating candidate clauses, and are
susceptible to local optima. To address this prob-
lem, we present an approach that directly utilizes
the data in constructing candidates. A relational
database can be viewed as a hypergraph with con-
stants as nodes and relations as hyperedges. We
find paths of true ground atoms in the hyper-
graph that are connected via their arguments. To
make this tractable (there are exponentially many
paths in the hypergraph), we lift the hypergraph
by jointly clustering the constants to form higher-
level concepts, and find paths in it. We variabilize
the ground atoms in each path, and use them to
form clauses, which are evaluated using a pseudo-
likelihood measure. In our experiments on three
real-world datasets, we find that our algorithm
outperforms the state-of-the-art approaches.

1. Introduction

In recent years, there has been a surge of interest
in combining statistical and relational learning ap-
proaches (Getoor & Taskar, 2007), driven by the re-
alization that many applications require both. Re-
cently, Richardson and Domingos (2006) introduced
Markov logic networks (MLNs), a statistical relational
language combining first-order logic and Markov net-
works. An MLN consists of weighted first-order logic
formulas, viewed as templates for Markov network fea-
tures. Learning MLN structure is an important but
challenging task, and to date only a few approaches

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

have been proposed (Kok & Domingos, 2005; Mi-
halkova & Mooney, 2007; Biba et al., 2008b; etc.).

Most of these approaches systematically enumerate
candidate clauses by starting from an empty clause,
greedily adding literals to it, and testing the resulting
clause’s empirical fit to training data. Such a strat-
egy has two shortcomings: searching the large space
of clauses is computationally expensive; and it is sus-
ceptible to converging to a local optimum, missing po-
tentially useful clauses. These shortcomings can be
ameliorated by using the data to a priori constrain
the space of candidates. This is the basic idea in rela-
tional pathfinding (Richards & Mooney, 1992), which
finds paths of true ground atoms that are linked via
their arguments and then generalizes them into first-
order rules. Each path corresponds to a conjunction
that is true at least once in the data. Since most con-
junctions are false, this helps to concentrate the search
on regions with promising rules. However, pathfind-
ing potentially amounts to exhaustive search over an
exponential number of paths. Hence, systems us-
ing relational pathfinding (e.g., BUSL (Mihalkova &
Mooney, 2007)) typically restrict themselves to very
short paths, creating short clauses from them and
greedily joining them into longer ones.

In this paper, we present LHL, an approach that uses
relational pathfinding to a fuller extent than previous
ones. It mitigates the exponential search problem by
first inducing a more compact representation of data,
in the form of a hypergraph over clusters of constants.
Pathfinding on this ‘lifted’ hypergraph is typically at
least an order of magnitude faster than on the ground
training data, and produces MLNs that are more ac-
curate than previous state-of-the-art approaches. LHL
is short for Learning via Hypergraph Lifting.

We begin by reviewing Markov logic in the next sec-
tion. We then describe our structure learning algo-
rithm (Section 3) and report our experiments with
it (Section 4). Finally, we discuss related work (Sec-
tion 5) and future work (Section 6).

Learning Markov Logic Network Structure via Hypergraph Lifting

2. Markov Logic

In first-order logic (Genesereth & Nilsson, 1987), for-
mulas are constructed using four types of symbols:
constants, variables, functions, and predicates. (In
this paper we use only function-free logic.) Constants
represent objects in a domain of discourse (e.g., peo-
ple: Anna, Bob, etc.). Variables (e.g., x, y) range over
the objects. Predicates represent relations among ob-
jects (e.g., Advises), or attributes of objects (e.g.,
Student). (In this paper, we use predicate and re-
lation interchangeably.) Variables and constants may
be typed. An atom is a predicate symbol applied to a
list of arguments, which may be variables or constants
(e.g., Advises(x, Bob)). A ground atom is an atom all
of whose arguments are constants. A world is an as-
signment of truth values to all possible ground atoms.
A database is a partial specification of a world; each
atom in it is true, false or (implicitly) unknown. In this
paper, we make a closed-world assumption: a ground
atom not in the database is assumed to be false. A
clause is a disjunction of non-negated/negated atoms.
A Markov network (Pearl, 1988) represents the joint
distribution of a set of variables X = (X1, . . . , Xn) ∈
X as a product of factors: P (X=x) = 1

Z

∏
k fk(xk),

where each factor fk is a non-negative function of a
subset of the variables xk, and Z is a normalization
constant. As long as P (X=x) > 0 for all x, the distri-
bution can be equivalently represented as a log-linear
model: P (X=x) = 1

Z exp (
∑
i wigi(x)), where the fea-

tures gi(x) are arbitrary functions of (a subset of) the
variables’ state. A Markov logic network (MLN) is a
set of weighted first-order formulas. Together with a
set of constants representing objects in the domain, it
defines a Markov network with one variable per ground
atom and one feature per ground formula. The prob-
ability distribution over possible worlds x is given by
P (X = x) = 1

Z exp(
∑
i∈F

∑
j∈Gi

wigj(x)) where Z is
the partition function, F is the set of all first-order for-
mulas in the MLN, Gi is the set of groundings of the
ith first-order formula, and gj(x) = 1 if the jth ground
formula is true and gj(x) = 0 otherwise. Markov logic
enables us to compactly represent complex models in
non-i.i.d. domains. General algorithms for inference
and learning in Markov logic are discussed in Richard-
son and Domingos (2006).

3. Learning via Hypergraph Lifting

We call our algorithm LHL, for Learning via
Hypergraph Lifting. In LHL, we make use of hyper-
graphs. A hypergraph is a straightforward generaliza-
tion of a graph in which an edge can link any number
of nodes, rather than just two. More formally, we de-
fine a hypergraph as a pair (V,E) where V is a set of

Figure 1. Lifting a hypergraph.

nodes, and E is a multiset of labeled non-empty or-
dered subsets of V called hyperedges. In LHL, we find
paths in a hypergraph. A path is defined as a set of
hyperedges such that for any two hyperedges e0 and
en in the set, there exists an ordering of (a subset of)
hyperedges in the set e0, e1, . . . , en−1, en such that ei
and ei+1 share at least one node.

A database can be viewed as a hypergraph with con-
stants as nodes, and true ground atoms as hyperedges.
Each hyperedge is labeled with a predicate symbol.
Nodes (constants) are linked by a hyperedge (true
ground atom) if and only if they appear as arguments
in the hyperedge. (Henceforth we use node and con-
stant interchangeably, and likewise for hyperedge and
true ground atom.) A path of hyperedges can be gen-
eralized into a first-order clause by variabilizing their
arguments. To avoid tracing the exponential number
of paths in the hypergraph, LHL first jointly clusters
the nodes into higher-level concepts, and by doing so
it also clusters the hyperedges (i.e., the ground atoms
containing the clustered nodes). The ‘lifted’ hyper-
graph has fewer nodes and hyperedges, and therefore
fewer paths, reducing the cost of finding them.

Figure 1 provides an example. We have a database
describing an academic department where professors
tend to have students whom they are advising as teach-
ing assistants (TAs) in the classes the professors are
teaching. The left graph is created from the database,
and after lifting, results in the right graph. Observe
that the lifted graph is simpler and the clustered con-
stants correspond to the high-level concepts of Profes-
sor, Student, and Course.

Algorithm 1 gives the pseudocode for LHL. LHL be-
gins by lifting a hypergraph (Algorithm 2). Then it
finds paths in the lifted hypergraph (Algorithm 3). Fi-
nally it creates candidate clauses from the paths, and
learn their weights to create an MLN (Algorithm 4).

3.1. Hypergraph Lifting

We call our hypergraph lifting algorithm LiftGraph.
LiftGraph is similar to the MRC and SNE algo-
rithms (Kok & Domingos, 2007; Kok & Domingos,
2008). It differs from them in the following ways. Lift-
Graph can handle relations of arbitrary arity, whereas

Learning Markov Logic Network Structure via Hypergraph Lifting

Algorithm 1 LHL(D,T, ω, µ, ν, π, π′, σ)
input: D, a relational database

T , a set of types, where a type is a set of constants
ω, maximum number of hyperedges in a path
µ, minimum number of ground atoms per hyperedge in

a path in order for it to be selected
ν, maximum number of ground atoms to sample in a path
π, π′, length penalties on clauses
σ, fraction of atoms to sample from D

output: (Clauses,Weights), an MLN containing a set of learned
clauses and their weights

note: Index H maps from each node γi to the set of
hyperedges r(γ1, . . . , γi, . . . , γn) containing γi

E is a set of hyperedges in a lifted hypergraph
Paths is a set of paths, each path being a set of hyperedges

(H,E)← LiftGraph(D,T)
Paths← ∅
for each r(γ1, . . . , γn) ∈ E
Paths← Paths ∪ FindPaths({r(γ1, . . . , γn)}, {γ1, . . . , γn}, ω,H)

(Clauses,Weights)← CreateMLN(Paths,D, µ, ν, π, π′, σ)
return (Clauses,Weights)

Algorithm 2 LiftGraph(D,T)
note: The inputs and output are as described in Algorithm 1
for each t ∈ T

Γt ← ∅
for each x ∈ t

Γt ← Γt ∪ {γx} (γx is a unit cluster containing x)
H[γx]← ∅ (H maps from nodes to hyperedges)

E ← ∅ (E contains hyperedges)
for each true ground atom r(x1, . . . , xn) ∈ D
E ← E ∪ {r(γx1 , . . . , γxn)}
for each xi ∈ {x1, . . . , xn}
H[γxi

]← H[γxi
] ∪ {r(γx1 , . . . , γxn)}

repeat
for each t ∈ T

(γbest, γ
′
best)← ClusterPairWithBestGain(Γt)

if {(γbest, γ
′
best)} 6= ∅

γnew ← γbest ∪ γ′best
Γt ← (Γt \ {γbest, γ

′
best}) ∪ γnew

H[γnew]← ∅
for each γ ∈ {γbest, γ

′
best}

for each r(γ1, . . . , γ, . . . , γn) ∈ H[γ]
H[γnew]← H[γnew] ∪ {r(γ1, . . . , γnew, . . . , γn)}
E ← E \ {r(γ1, . . . , γ, . . . , γn)}
E ← E ∪ {r(γ1, . . . , γnew, . . . , γn)}

H[γ]← ∅
until no clusters are merged for all t
return (H,E)

SNE can only handle binary relations. Unlike MRC,
LiftGraph finds a single clustering of constant symbols
rather than multiple clusterings. While both SNE and
MRC can cluster predicate symbols, in this paper, for
simplicity, we do not cluster predicates. (However, it
is straightforward to extend LiftGraph to do so.) Most
domains contain many fewer predicates than objects,
and structure learning alone suffices to capture the
dependencies among them, which is what LHL does.
(Because SNE and MRC do not have a structure learn-
ing component, it is essential for them to cluster predi-
cates in order to learn the dependencies among them.)

LiftGraph works by jointly clustering the constants in
a hypergraph in a bottom-up agglomerative manner,
allowing information to propagate from one cluster to
another as they are formed. The number of clusters
need not be pre-specified. As a consequence of clus-

Algorithm 3 FindPaths(CurPath, V, ω,H)
input: CurPath, set of connected hyperedges

V , set of nodes in CurPath
note: The other inputs & output are as described in Algorithm 1
if |CurPath| = ω

return ∅
Paths← ∅
for each γi ∈ V

for each r(γ1, . . . , γn) ∈ H[γi]
if r(γ1, . . . , γn) 6∈ CurPath
CurPath← CurPath ∪ {r(γ1, . . . , γn)}
Paths← Paths ∪ {CurPath}
V ′ ← ∅
for each γj ∈ {γ1, . . . , γn}

if γj 6∈ V
V ← V ∪ {γj}
V ′ ← V ′ ∪ {γj}

Paths← Paths ∪ FindPath(CurPath, V, ω,H)
CurPath← CurPath \ {r(γ1, . . . , γn)}
V ← V \ V ′

return Paths

tering the constants, the ground atoms in which the
constants appear are also clustered. Each hyperedge in
the lifted hypergraph contains at least one true ground
atom.

LiftGraph is defined using Markov logic. We use the
variable r to represent a predicate, xi for the ith
argument of a predicate, γi for a cluster of ith ar-
guments of a predicate (i.e., a set of constant sym-
bols), and Γt for a clustering of constant symbols of
type t (i.e., a set of clusters or, equivalently, a par-
titioning of a set of symbols). If xi is in γi, we
say that (x1, . . . , xn) is in the cluster combination
(γ1, . . . , γn), and that (γ1, . . . , γn) contains the atom
r(x1, . . . , xn). r(γ1, . . . , γn) denotes a hyperedge con-
necting nodes γ1, . . . , γn. A hypergraph representing
the true ground atoms r(x1, . . . , xn) in a database is
simply (V = {{xi}}, E = { r({x1}, . . . , {xn}) }) with
each constant xi in its own cluster, and a hyperedge
for each true ground atom.

The learning problem in LiftGraph consists of finding
the cluster assignment {Γ} that maximizes the poste-
rior probability P ({Γ}|D) ∝ P ({Γ})P (D|{Γ}), where
D is a database of truth assignments to the observable
r(x1, . . . , xn) ground atoms. The prior P ({Γ}) is sim-
ply an MLN containing two rules. The first rule states
that each symbol belongs to exactly one cluster. This
rule is hard, i.e., it has infinite weight and cannot be
violated.

∀x ∃1γ x ∈ γ
The second rule is

∀γ1, . . . , γn ∃x1, . . . , xn x1 ∈ γ1 ∧ . . . ∧ xn ∈ γn

with negative weight −∞ < −λ < 0, which imposes an
exponential prior on the number of cluster combina-
tions to prevent overfitting. The parameter λ is fixed
during learning, and is the penalty in log-posterior in-
curred by adding a cluster combination.

Learning Markov Logic Network Structure via Hypergraph Lifting

Algorithm 4 CreateMLN(Paths,D, µ, ν, π, π′, σ)
calls: V ariabilizePaths(Paths), replaces the nodes in each path in

Paths with variables
MakeClauses(Path), creates clauses from hyperedges in Path
Sample(Path, ν), uniformly samples ν ground atoms from Path
SampleDB(D, σ), uniformly samples a fraction σ of atoms

from database D
NumTrueGroundAtoms(Path), counts the number of true

ground atoms in Path
note: The inputs and output are as described in Algorithm 1
(only select paths with enough true ground atoms (heuristic 1))
Paths← V ariabilizePaths(Paths)
SelectedPaths← ∅
for each p ∈ Paths

if (NumTrueGroundAtoms(p) >= PathLength(p) ∗ µ)
SelectedPaths← SelectedPaths ∪ {p}

(evaluate candidates with ground atoms in Path (heuristic 2))
CandidateClauses← ∅
for each p ∈ SelectedPaths
D′ ← Sample(p, ν)
for each c ∈MakeClauses(p)

if Score(c,D′) > Score(∅, D′)
CandidateClauses← CandidateClauses ∪ {c}

CandidateClauses← SortByLength(CandidateClauses)
(Evaluate candidates with ground atoms in database D)
D′ ← SampleDB(D, σ)
SelectedClauses← ∅
for each c ∈ CandidateClauses
BetterThanSubClauses← True
for each c′ ∈ (SubClauses(c) ∩ SelectedClauses)

if Score(c,D′) < Score(c′, D′)
BetterThanSubClauses← False
break

if (BetterThanSubClauses)
SelectedClauses← SelectedClauses ∪ {c}

AddClausesToMLN(SelectedClauses)
Weights← LearnWeights(SelectedClauses)
return (SelectedClauses,Weights)

The main MLN for the likelihood P (D|{Γ}) contains
the following rules. For each predicate r and each
cluster combination (γ1, . . . , γn) that contains a true
ground atom of r, the MLN contains the rule:
∀x1, . . . , xn x1 ∈ γ1 ∧ . . . ∧ xn ∈ γn ⇒ r(x1, . . . , xn)

We call these atom prediction rules because they state
that the truth value of an atom is determined by the
cluster combination it belongs to. These rules are soft.
At most there can be one such rule for each true ground
atom (i.e., when each constant is in its own cluster).

For each predicate r, we create a rule
∀x1, . . . , xn(∧m

i=1 ¬(x1 ∈ γi1 ∧ . . . ∧ xn ∈ γin)
)
⇒ r(x1, . . . , xn)

where (γ1
1 , . . . , γ

1
n), . . . , (γm1 , . . . , γ

m
n) are cluster com-

binations containing true ground atoms of r. This rule
accounts for all atoms (all false) that are not in any
cluster combination with true ground atoms of r. We
call such a rule a default atom prediction rule because
its antecedents are analogous to a default cluster com-
bination that contains all atoms that are not in the
cluster combinations of any atom prediction rule.

LiftGraph simplifies the learning problem by perform-
ing hard assignments of constant symbols to clus-
ters (i.e., instead of computing probabilities of cluster

membership, a symbol is simply assigned to its most
likely cluster). The weights and the log-posterior can
now be computed in closed form.1 LiftGraph thus
simply searches over cluster assignments, evaluating
each one by its posterior probability. It begins by
assigning each constant symbol xi to its own clus-
ter {xi}, and creating a hyperedge r({x1}, . . . , {xn})
for each true ground atom r(x1, . . . , xn). Next it cre-
ates candidate pairs of clusters of each type, and for
each pair, it evaluates the gain in posterior prob-
ability if its clusters are merged. It then chooses
the pair that gives the largest gain to be merged.
When clusters γi and γ′i are merged to form γnewi ,
each hyperedge r(γ1, . . . , γi, . . . , γn) is replaced with
r(γ1, . . . , γ

new
i , . . . , γn) (and similarly for hyperedges

containing γ′i). Since r(γ1, . . . , γi, . . . , γn) contains at
least one true ground atom, r(γ1, . . . , γ

new
i , . . . , γn)

must do too. To avoid trying all possible candidate
pairs of clusters, LiftGraph only tries to merge γi and
γ′i if they appear in hyperedges r(γ1, . . . , γi, . . . , γn)
and r(γ1, . . . , γ

′
i, . . . , γn). In this manner, it incremen-

tally merges clusters until no merges can be performed
to improve posterior probability. It then returns a
lifted hypergraph whose hyperedges all contain at least
one true ground atom.

3.2. Path Finding

FindPaths constructs paths by starting from each hy-
peredge in a hypergraph. It begins by adding a hy-
peredge to an empty path, and then recursively adds
hyperedges linked to nodes already present in the path
(hyperedges already in the path are not re-added).
Its search terminates when the path reaches a max-
imum length or when no new hyperedge can be added.
Each time a hyperedge is added to the path, Find-
Paths stores the resulting path as a new one. All the
paths are passed on to the next step to create clauses.

3.3. Clause Creation and Pruning

A path in the hypergraph corresponds to a conjunction
of r(γ1, . . . , γn) hyperedges, and it guarantees that the
conjunction has at least one support in the hypergraph
(i.e., there is at least one true ground atom in each hy-
peredge). We replace each γi in a path with a variable,
thereby creating a variabilized atom for each hyper-
edge. We convert the conjunction of positive literals to
a clause because that is the form that is typically used
by ILP (inductive logic programming) and MLN struc-
ture learning and inference algorithms. (In Markov
logic, a conjunction of positive literals with weight w
is equivalent to a clause of negative literals with weight

1See http://alchemy.cs.washington.edu/papers/kok09a
for the derivation of the log-posterior.

Learning Markov Logic Network Structure via Hypergraph Lifting

−w). In addition, we add clauses with the signs of up
to n literals flipped (where n is a user-defined param-
eter), since the resulting clauses may also be useful.
(Notice that if all but one of the literals are negative,
this is a definite clause whose antecedent is supported
by a path in the hypergraph.)

We evaluate each clause using weighted pseudo-
log-likelihood (WPLL) (Kok & Domingos, 2005).
WPLL is defined as: logP •w,F,D(X = x) =∑
r∈R cr

∑
g∈GD

r
logPw,F (Xg = xg|MBx(Xg))

where F is a set of clauses, w is a set of clause
weights, R is the set of first-order predicates,
GDr is a set of ground atoms of predicate r in
database D, and xg is the truth value (0 or 1) of
ground atom g, and Pw,F (Xg = xg|MBx(Xg)) =

exp
(∑

i∈F
wini(x)

)
exp
(∑

i∈F
wini(x[Xg=0])

)
+exp

(∑
i∈F

wini(x[Xg=1])
) .

MBx(Xg) is the state of Xg’s Markov blanket in
the data, ni(x) is the number of true groundings of
the ith clause in x, ni(x[Xg=0]) is the number of true
groundings of the ith clause when we force Xg=0 and
leave the remaining data unchanged, and similarly
for ni(x[Xg=1]). Following Kok & Domingos, we set
cr=1/|GDr | to weight all first-order predicates equally,
and penalize the WPLL with a length penalty −πd,
where d is the number of atoms in a clause. Summing
over all ground atoms in WPLL is computationally
expensive, so we only sum over a randomly-sampled
fraction σ of them. We define the score of a clause
c as Score(c,D) = logP •w′,F ′,D(X = x) − πd, where
F ′ is a set containing c and one unit clause for each
predicate in R, and w′ is a set of optimal weights for
the clauses in F ′.

We iterate over the clauses from shortest to longest.
For each clause, we compare its scores against those
of its sub-clauses (considered separately) that have al-
ready been retained. If the clause scores higher than
all of these sub-clauses, it is retained; otherwise, it is
discarded. In this manner, we discard clauses which
are unlikely to be useful. Note that this process is
efficient because the score of a clause only needs to
be computed once, and can be cached for future com-
parisons. (Alternatively, we could evaluate a clause
against all its sub-clauses taken together, but this
would require re-optimizing the weights for each com-
bination of sub-clauses for every comparison, which is
computationally expensive.)

Finally we add the retained clauses to an MLN. We
have the option of doing this in several ways. We could
greedily add the clauses one at a time in order of de-
creasing score. After adding each clause, we relearn
the weights, and keep the clause in the MLN if it im-
proves the overall WPLL. Alternatively, we could add

Table 1. Information on datasets.
Const- Predi- True Total

Dataset Types ants cates Atoms Atoms

IMDB 4 316 6 1224 17,793
UW-CSE 9 929 12 2112 260,254

Cora 5 3079 10 42,558 687,422

all the clauses to the MLN, and learn weights using L1
regularization to prune away ‘bad’ clauses by giving
them zero weights (Huynh & Mooney, 2008). Lastly,
we could use L2-regularization instead if the number of
clauses is not too large, and rely on the regularization
to give ‘bad’ clauses low weight. Optionally, we discard
clauses containing ‘dangling’ variables (i.e., variables
which only appear once in a clause), since these are
unlikely to be useful.

We use two heuristics to speed up clause evaluation.
First we discard a path at the outset if it contains
fewer than µ true ground atoms per hyperedge. This
cuts the time we spend evaluating clauses that are not
well supported by data. Second, before evaluating a
clause’s WPLL with respect to a database, we evaluate
it with respect to the smaller number of ground atoms
contained in the paths that gave rise to it. (Note that
a clause can be created from different paths.) We limit
the number of such ground atoms to a maximum of ν.
We use a smaller structure prior π′ to avoid prema-
turely removing good clauses.

4. Experiments

4.1. Datasets

We carried out experiments to investigate whether
LHL performs better than previous approaches,
and to evaluate the contributions of its compo-
nents. We used three datasets publicly available at
http://alchemy.cs.washington.edu. Their details are
shown in Table 1.

IMDB. This dataset, created by Mihalkova and
Mooney (2007) from the IMDB.com database, de-
scribes a movie domain. It contains predicates describ-
ing movies, actors, directors, and their relationships
(e.g, Actor(person), WorkedIn(person, movie), etc.)
It is divided into 5 independent folds. We omitted
4 equality predicates (e.g., SameMovie(movie, movie))
that are true if and only if their arguments are the
same. They are superseded by the equality operator
in the systems we are comparing, and can be easily
predicted with a unit clause (e.g., SameMovie(x, x)),
trivially boosting the systems’ performances.

UW-CSE. This dataset, prepared by Richardson
and Domingos (2006), describes an academic de-
partment. Its predicates describe students, fac-
ulty, and their relationships (e.g, Professor(person),

Learning Markov Logic Network Structure via Hypergraph Lifting

TaughtBy(course, person, quarter), etc.). The
dataset is divided into 5 independent areas/folds (AI,
graphics, etc.). We omitted 9 equality predicates for
the same reasons as above.

Cora. This dataset is a collection of citations to
computer science papers, created by Andrew Mc-
Callum, and later processed by Singla and Domin-
gos (2006) into 5 folds for the task of deduplicat-
ing the citations, and their title, author, and venue
fields. Predicates include: SameCitation(cit1, cit2),
TitleHasWord(title, word), etc.

4.2. Systems

We compared LHL to two state-of-the-art systems:
BUSL (Mihalkova & Mooney, 2007) and MSL (Kok
& Domingos, 2005). Both systems are implemented in
the Alchemy software package (Kok et al., 2009).

BUSL. BUSL uses a form of relational pathfinding
to find a path of ground atoms in the training data,
but restricts itself to very short paths (length 2) to
avoid fully searching the large space of paths. It vari-
abilizes each ground atom in the path, and constructs
a Markov network whose nodes are the paths viewed
as Boolean variables (conjunctions of atoms). It uses
the Grow-Shrink Markov network learning algorithm
to find the edges between the nodes. For each node,
the algorithm greedily adds and removes nodes from its
Markov blanket using the χ2 measure of dependence.
From the cliques thus created in the Markov network,
BUSL creates clauses. For each clique, it forms dis-
junctions of the atoms in the clique’s nodes, and cre-
ates clauses with all possible negation/non-negation
combinations of the atoms. BUSL then computes the
WPLL of the clauses, and adds them one at a time,
in order of decreasing WPLL, to an MLN containing
only unit clauses. After adding a clause, the weights
of all clauses in the MLN are relearned to compute the
new WPLL. If a clause increases the overall WPLL, it
is retained in the MLN.

MSL. We used the beam search version of MSL that
is implemented in Alchemy. MSL begins by adding all
possible unit clauses to an MLN. MSL maintains a set
of n clauses that give the best score improvement over
the current MLN. Initially, the set is empty. MSL cre-
ates all possible clauses of length two, and adds the n
clauses with the highest improvement in WPLL to the
set. It then repeatedly adds literals to the clauses in
the set, and evaluates the WPLL of the newly formed
clauses, always maintaining the n highest-scoring ones
in the set. When none can be added to the set, it adds
the best performing clause in the set to the MLN. It
then restarts the search from an empty set. MSL ter-
minates when it cannot find a clause that improves

upon the current MLN’s WPLL.

To investigate the importance of hypergraph lifting,
we removed the LiftGraph component from LHL, and
let FindPaths run on the unlifted hypergraph. The
rules it learned were pruned by CreateMLN as normal.
We call this system LHL-FindPaths. We also investi-
gated the contribution of hypergraph lifting alone by
applying LiftGraph’s MLN on the test sets. We call
this system LHL-LiftGraph. We also investigated the
effectiveness of the two heuristics in CreateMLN, by
disabling them and observing the performance of the
MLN thus learned by LHL. We call this system LHL-
NoHeu. Altogether we compared six systems: LHL,
LHL-NoHeu, LHL-FindPaths, LHL-LiftGraph, BUSL
and MSL. All systems are implemented in C++.

The following parameter values were used for the LHL
systems on all datasets: λ = 1, µ = 50, ν = 500,
σ = 0.5. The other parameters were set as follows:
ω =5 (IMDB, UW-CSE) and 4 (Cora); π=0.01 (UW-
CSE, Cora) and 0.1 (IMDB); and π′ = 0.001 (UW-
CSE, Cora) and 0.01 (IMDB). (See Algorithm 1 for
the parameter descriptions.) For BUSL and MSL, we
set their parameters corresponding to π to values we
used for LHL. We also set their minWeight parameter
to zero (empirically we found that this value performed
better than their defaults). All other BUSL and MSL
parameters were set to their default values. For all
LHL systems, we created clauses with all combina-
tions of negated/non-negated atoms in a variabilized
path; greedily added clauses one at a time in order of
decreasing score to an MLN (initially empty); and ex-
cluded clauses with dangling variables from the final
MLN. (To ensure fairness, we also tried excluding dan-
gling clauses in BUSL and MSL, and report the best
results for each.) The parameters were set in an ad hoc
manner, and per-fold optimization using a validation
set could conceivably yield better results. All systems
were run on identically configured machines (2.8GHz,
4GB RAM).

4.3. Methodology

For each dataset, we performed cross-validation using
the five previously defined folds. For IMDB and UW-
CSE, we performed inference over the groundings of
each predicate to compute their probabilities of be-
ing true, using the groundings of all other predicates
as evidence. Exceptions are the predicates Actor and
Director (IMDB), and Student and Professor (UW-
CSE). We evaluated groundings for those predicates
together, using all other predicates as evidence. This
is because groundings of those predicates for the same
constant are mutually exclusive and exhaustive (e.g.,
Actor(Bob) and Director(Bob)). Knowing one deter-

Learning Markov Logic Network Structure via Hypergraph Lifting

Table 2. Experimental results.
IMDB UW-CSE Cora

System AUC CLL Time (min) AUC CLL Time (hr) AUC CLL Time (hr)
LHL 0.69±0.01 −0.13±0.00 15.63±1.88 0.22±0.01 −0.04±0.00 7.55±1.53 0.87±0.00 −0.26±0.00 14.82±1.78
LHL-NoHeu 0.69±0.01 −0.13±0.00 39.00±13.56 0.22±0.01 −0.04±0.00 158.24±46.70 0.87±0.00 −0.26±0.00 33.99±3.86
LHL-FindPaths 0.69±0.01 −0.13±0.00 242.41±30.31 0.19±0.01 −0.04±0.00 56.69±19.98 0.91±0.00 −0.17±0.00 5935.50±39.21
LHL-LiftGraph 0.45±0.01 −0.27±0.01 0.18±0.01 0.14±0.01 −0.06±0.00 0.001±0.000 - - 0.01±0.01
BUSL 0.47±0.01 −0.14±0.00 4.69±1.02 0.21±0.01 −0.05±0.00 12.97±9.80 0.17±0.00 −0.37±0.00 18.65±9.52
MSL 0.41±0.01 −0.17±0.00 2.79±0.59 0.18±0.01 −0.57±0.00 2.13±0.38 0.17±0.00 −0.37±0.00 65.60±1.82

mines the value of the other. For Cora, we ran infer-
ence over each of the four predicates SameCitation,
SameTitle, SameAuthor, and SameVenue in turn, us-
ing the groundings of all other predicates as evidence.
We used Alchemy’s Gibbs sampling for all systems ex-
cept LHL-LiftGraph. For LHL-LiftGraph, we used
Alchemy’s MC-SAT algorithm (Poon & Domingos,
2006) because it has been shown to give better re-
sults for MLNs containing deterministic rules, which
LHL-LiftGraph does. Each run of the inference algo-
rithms drew 1 million samples, or ran for a maximum
of 24 hours, whichever came earlier. To evaluate the
performance of the systems, we measured the average
conditional log-likelihood of the test atoms (CLL), and
the area under the precision-recall curve (AUC). The
advantage of the CLL is that it directly measures the
quality of the probability estimates produced. The ad-
vantage of the AUC is that it is insensitive to the large
number of true negatives (i.e., atoms that are false and
predicted to be false). The precision-recall curve for a
predicate is computed by varying the threshold CLL
above which an atom is predicted to be true.

4.4. Results

Table 2 reports the AUCs, CLLs and runtimes. The
AUC and CLL results are averages over all atoms in
the test sets and their standard deviations. Runtimes
are averages over the five folds.

We first compare LHL to BUSL and MSL. In both
AUC and CLL, LHL outperforms BUSL and MSL
on all datasets. The differences between LHL and
BUSL/MSL on all datasets are statistically significant
according to one-tailed paired t-tests (p-values ≤ 0.02
for both AUC and CLL). LHL is slower than BUSL
and MSL on the smallest dataset (IMDB), mixed on
the medium one (UW-CSE), and faster on the largest
one (Cora). This suggests that LHL scales better than
BUSL and MSL.

Next we compare LHL to its components LHL-
LiftGraph and LHL-FindPaths. Comparing the run-
times of LHL and LHL-FindPaths, we see that LHL
is much faster than LHL-FindPaths. LHL’s AUC and
CLL are similar to or better than LHL-FindPaths’s
on IMDB and UW-CSE, but are worse on Cora.
These results suggest that: LHL is a lot faster than
LHL-FindPaths without any loss in accuracy on some
datasets; and when LHL-FindPaths does better, it

does so at a huge computational cost (e.g., it took
about 247 days to run on Cora2). LHL also outper-
forms LHL-LiftGraph on both AUC and CLL on the
IMDB and UW-CSE datasets.3 This suggests that
LHL’s ability to learn clauses that capture complex
dependencies among predicates is an advantage over
the simple rules in LHL-LiftGraphs.

Comparing LHL and LHL-NoHeu, we see that the two
speedup heuristics in CreateMLN are effective in re-
ducing LHL’s runtime. On all datasets, we see that
the heuristics do not compromise the quality of the
MLNs that LHL learns because LHL and LHL-NoHeu
have the same AUC and CLL. Examining the runtime
of LiftGraph, we found that it accounts for only a tiny
fraction of LHL runtime (less than 0.1%).

The results for MSL on UW-CSE and Cora are much
worse than those reported by Kok and Domingos
(2005). They evaluated MSL by computing the proba-
bility that a ground atom is true given all other ground
atoms as evidence, a much easier task than ours. We
also did not use their domain-specific declarative bias
to guide clause construction. (Notice how LHL is able
to overcome the myopia of greedy search without the
help of this bias.) The results for BUSL on IMDB and
UW-CSE are also worse than that reported by Mi-
halkova and Mooney (2007). Unlike them, we omitted
the equality predicates (as mentioned earlier) because
they are superfluous and can be easily predicted with
a single unit clause. We also infer the groundings of
Actor/Director and Professor/Student simultane-
ously, which is a harder task than theirs. The last two
reasons also contribute to MSL’s poor performance.

5. Related Work

Huynh and Mooney (2008), and Biba et al. (2008a)
proposed discriminative structure learning algorithms
for MLNs. These algorithms learn clauses that predict
a single target predicate, unlike LHL, which models the
full joint distribution of the predicates. Besides rela-
tional pathfinding (Richards & Mooney, 1992), ILP

2For each test fold, we ran FindPaths in parallel on all
training folds, and added the runtimes.

3LHL-LiftGraph on Cora crashed by running out of
memory. Alchemy automatically converts the default atom
prediction rules into clausal form and represents each
clause separately, causing a blow-up in the number of
clauses.

Learning Markov Logic Network Structure via Hypergraph Lifting

approaches with bottom-up aspects include Muggle-
ton & Buntine (1988), Muggleton & Feng (1992), etc.
These approaches are vulnerable to noise in the data,
and also only create clauses to predict a single tar-
get predicate. Popescul and Ungar (2004) have also
used clustering to improve probabilistic rule induc-
tion. Their approach is limited to logistic regression
and SQL rules, uses a very simple clustering method
(k-means), and requires pre-specifying the number of
clusters. Craven and Slattery (2001) learn first-order
rules for hypertext classification using naive Bayes
models as invented predicates. The idea of lifting
comes from theorem-proving in first-order logic. In re-
cent years, it has been extended to inference in MLNs
and other probabilistic languages. In lifted belief prop-
agation (Singla & Domingos, 2008), the algorithm
forms clusters of ground atoms and clusters of ground
clauses. It performs inference over the more compact
network of clusters, thereby improving efficiency. This
is analogous to LHL’s approach of forming clusters of
ground atoms to create a lifted hypergraph in which
the search for clauses is more efficient.

6. Conclusion and Future Work

We proposed LHL, a novel algorithm for learning MLN
structure. LHL lifts the training data into a compact
hypergraph over clusters of constants, and uses rela-
tional pathfinding over the hypergraph to find clauses.
Empirical comparisons with two state-of-the-art sys-
tems on three datasets show the promise of LHL. Fu-
ture work includes: more tightly integrating the com-
ponents of LHL; scaling it up further; applying LHL
to larger, richer domains (e.g., the Web); etc.

Acknowledgments: This research was partly funded
by ARO grant W911NF-08-1-0242, DARPA contracts
FA8750-05-2-0283, FA8750-07-D-0185, HR0011-06-C-
0025, HR0011-07-C-0060 and NBCH-D030010, NSF
grants IIS-0534881 and IIS-0803481, and ONR grant
N00014-08-1-0670. The views and conclusions con-
tained in this document are the authors’ and should
not be interpreted as necessarily representing the of-
ficial policies, either expressed or implied, of ARO,
DARPA, NSF, ONR, or the US Government.

References
Biba, M., Ferilli, S., & Esposito, F. (2008a). Discrimi-

native structure learning of Markov logic networks.
18th Int. Conf. on Ind. Logic Prog. (pp. 59–76).

Biba, M., Ferilli, S., & Esposito, F. (2008b). Structure
learning of Markov logic networks through iterated
local search. 18th Euro. Conf. on Art. Intel. (pp.
361–365).

Craven, M., & Slattery, S. (2001). Relational learning

with statistical predicate invention: Better models
for hypertext. Mach. Learn., 43, 97–119.

Genesereth, M. R., & Nilsson, N. J. (1987). Logical
foundations of artificial intelligence.

Getoor, L., & Taskar, B. (Eds.). (2007). Introduction
to statistical relational learning.

Huynh, T. N., & Mooney, R. J. (2008). Discriminative
structure and parameter learning for Markov logic
networks. 25th Int. Conf. on Mach. Learn. (pp. 416–
423).

Kok, S., & Domingos, P. (2005). Learning the struc-
ture of Markov logic networks. 22th Int. Conf. on
Mach. Learn. (pp. 441–448).

Kok, S., & Domingos, P. (2007). Statistical predicate
invention. 24th Int. Conf. on Mach. Learn. (pp.
443–440).

Kok, S., & Domingos, P. (2008). Extracting semantic
networks from text via relational clustering. 19th
Euro. Conf. on Mach. Learn. (pp. 624–639).

Kok, S., Sumner, M., Richardson, M., Singla, P., Poon,
H., Lowd, D., Wang, J., & Domingos, P. (2009). The
Alchemy system for statistical relational AI (Tech-
nical Report). Dept. of Comp. Sci. & Eng., Univ. of
Washington, Seattle, WA.

Mihalkova, L., & Mooney, R. J. (2007). Bottom-up
learning of Markov logic network structure. 24th
Int. Conf. on Mach. Learn. (pp. 625–632).

Muggleton, S., & Buntine, W. (1988). Machine inven-
tion of first-order predicates by inverting resolution.
5th Int. Conf. on Mach. Learn. (pp. 339–352).

Muggleton, S., & Feng, C. (1992). Efficient induction
in logic programs. In S. Muggleton (Ed.), Inductive
logic programming, 281–298.

Pearl, J. (1988). Probabilistic reasoning in intelligent
systems: Networks of plausible inference.

Poon, H., & Domingos, P. (2006). Sound and effi-
cient inference with probabilistic and deterministic
dependencies. 21st Nat. Conf. on Art. Intel. (pp.
458–463).

Popescul, A., & Ungar, L. H. (2004). Cluster-based
concept invention for statistical relational learning.
10th Int. Conf. on Know. Disc. and Data Min. (pp.
665–664).

Richards, B. L., & Mooney, R. J. (1992). Learning
relations by pathfinding. 10th Nat. Conf. on Art.
Intel. (pp. 50–55).

Richardson, M., & Domingos, P. (2006). Markov logic
networks. Mach. Learn., 62, 107–136.

Singla, P., & Domingos, P. (2006). Entity resolution
with Markov logic. 6th Int. Conf. on Data Min. (pp.
572–582).

Singla, P., & Domingos, P. (2008). Lifted first-order
belief propagation. 23th AAAI Conf. on Art. Intel.
(pp. 1094–1099).

