
A General Method for Reducing the Complexity of Relational Inference
And its Application to MCMC

Hoifung Poon Pedro Domingos Marc Sumner
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.

{hoifung, pedrod, marcs}@cs.washington.edu

Abstract

Many real-world problems are characterized by complex rela-
tional structure, which can be succinctly represented in first-
order logic. However, many relational inference algorithms
proceed by first fully instantiating the first-order theory and
then working at the propositional level. The applicabilityof
such approaches is severely limited by the exponential time
and memory cost of propositionalization. Singla and Domin-
gos (2006) addressed this by developing a “lazy” version of
the WalkSAT algorithm, which grounds atoms and clauses
only as needed. In this paper we generalize their ideas to
a much broader class of algorithms, including other types of
SAT solvers and probabilistic inference methods like MCMC.
Lazy inference is potentially applicable whenever variables
and functions have default values (i.e., a value that is much
more frequent than the others). In relational domains, the
default is false for atoms and true for clauses. We illustrate
our framework by applying it to MC-SAT, a state-of-the-art
MCMC algorithm. Experiments on a number of real-world
domains show that lazy inference reduces both space and time
by several orders of magnitude, making probabilistic rela-
tional inference applicable in previously infeasible domains.

Introduction
In many real-world problems, the variables and func-
tions in question have “default” values that occur much
more frequently than others. Algorithms that exploit
this can greatly reduce the space and time complex-
ity of computation (e.g., sparse matrix computation).
In relational domains, the default is false for atoms
and true for clauses. For example, with 1000 per-
sons, the predicateCoauthor(person, person) yields
1,000,000 groundings, and the clause of transitivity for
coauthorshipCoauthor(p1, p2) ∧ Coauthor(p2, p3) ⇒
Coauthor(p1, p3) yields 1,000,000,000 groundings; how-
ever, mostCoauthor atoms are false, which trivially satis-
fies most transitivity clauses. Therefore, although the num-
ber of potential groundings can be very large, most of their
values need not be computed explicitly.

Recently, there has been increasing interest in statistical
relational learning (Getoor & Taskar 2007) and structured
prediction (Bakiret al. 2007). However, most existing ap-
proaches fail to leverage the sparsity of relational domains.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Instead, many approaches avoid the combinatorial blow-up
by either not modeling relational uncertainty, or doing so
in a very limited way. For example, probabilistic relational
models (PRMs) (Getooret al. 2001) only model uncer-
tainty over binary relations given attributes, not arbitrary de-
pendencies between relations (e.g., transitivity). Otherap-
proaches such as Markov logic (Richardson & Domingos
2006) do not sacrifice modeling capability, but their infer-
ence algorithms (e.g., MC-SAT) typically require complete
grounding of atoms/clauses, which severely limits their ap-
plicability. While there are some promising developments
in lifted inference (Brazet al. 2006), they are an extension
of variable elimination and their scalability is limited. Milch
& Russell (2006) proposed a form of MCMC inference for
relational domains that can avoid completely grounding the
state, but their approach requires users to provide domain-
specific proposal distributions and its scalability is unknown.

The LazySAT algorithm (Singla & Domingos 2006) is a
notable exception that takes advantage of relational sparsity
and greatly reduces memory usage. It is the lazy version of
WalkSAT (Selmanet al. 1996), but the ideas go beyond sat-
isfiability testing. In this paper, we present a general method
for lazy inference that applies to any algorithm with the fol-
lowing characteristics: the algorithm works by repeatedly
selecting a function or variable and recomputing its value,
and the value of a variable/function depends only on the
values of a subset of the other variables/functions. These
include a diverse set of algorithms for a variety of applica-
tions: WalkSAT, MaxWalkSAT, SampleSAT, DPLL, iterated
conditional modes, simulated annealing and MCMC algo-
rithms that update one variable at a time (Gibbs sampling,
single-component Metropolis-Hastings and simulated tem-
pering, etc.), MC-SAT, belief propagation, algorithms for
maximum expected utility, etc. We illustrate our method by
applying it to MC-SAT (Poon & Domingos 2006), a state-of-
the-art MCMC algorithm. Experiments on three real-world
domains show that Lazy-MC-SAT, the resulting algorithm,
reduces both space and time by several orders of magnitude.

We begin by briefly reviewing some necessary back-
ground. We then describe our general method for lazy in-
ference and illustrate how it applies to various algorithms
including MC-SAT. Finally, we present our experimental re-
sults and conclude.

Background

A first-order knowledge base (KB)is a set of sentences or
formulas in first-order logic (Genesereth & Nilsson 1987). A
term is any expression representing an object in the domain.
An atomic formulaor atomis a predicate symbol applied to
a tuple of terms. Formulas are recursively constructed from
atomic formulas using logical connectives and quantifiers.
A KB in clausal formis a conjunction ofclauses, a clause
being a disjunction of literals, a literal being an atom or its
negation. Aunit clauseis a clause with one literal. A lit-
eral ispure if it is always negated or always non-negated in
the clauses that contain it. Aground termis a term con-
taining no variables. Aground atomor ground predicateis
an atom all of whose arguments are ground terms. In finite
domains, first-order KBs can bepropositionalizedby replac-
ing each universally (existentially) quantified formula with
a conjunction (disjunction) of all its groundings.

A central problem in logic is that of determining if a KB
(usually in clausal form) issatisfiable, i.e., if there is an as-
signment of truth values to ground atoms that makes the
KB true. One approach to this problem is stochastic lo-
cal search, exemplified by WalkSAT (Selmanet al. 1996).
Starting from a random initial state, WalkSAT repeatedly
flips (changes the truth value of) an atom in a random un-
satisfied clause. With probabilityp, WalkSAT chooses the
atom that minimizes the number of unsatisfied clauses, and
with probability1 − p it chooses a random one. WalkSAT
is able to solve hard instances of satisfiability with hun-
dreds of thousands of variables in minutes. The MaxWalk-
SAT (Kautz et al. 1997) algorithm extends WalkSAT to
the weighted satisfiability problem, where each clause has
a weight and the goal is to maximize the sum of the weights
of satisfied clauses. WalkSAT is essentially the special case
of MaxWalkSAT obtained by giving all clauses the same
weight. For simplicity, in this paper we will just treat them
as one algorithm, called WalkSAT, with the sum of the
weights ofunsatisfiedclauses as the cost function that we
seek to minimize. Further, instead of directly minimizing
the cost, we will minimize DeltaCost(v), the change in cost
resulting from flippingv in the current solution, which is
equivalent.

Markov logic is a probabilistic extension of first-order
logic that makes it possible to compactly specify probability
distributions over complex relational domains (Richardson
& Domingos 2006). AMarkov logic network (MLN)is a
set of weighted first-order clauses. Together with a set of
constants, it defines a Markov network with one node per
ground atom and one feature per ground clause. The weight
of a feature is the weight of the first-order clause that orig-
inated it. The probability of a statex in such a network is
given by P (x) = (1/Z) exp (

∑
i
wifi(x)), whereZ is a

normalization constant,wi is the weight of theith clause,
fi = 1 if the ith clause is true, andfi = 0 otherwise.
MPE inference (finding the most probable state given ev-
idence) can be done using a weighted satisfiability solver
(e.g., LazySAT); conditional probabilities can be computed
using Markov chain Monte Carlo (e.g., MC-SAT).

A General Method for Lazy Inference
In a domain where most variables assume the default value,
it is wasteful to allocate memory for all variables and func-
tions in advance. The basic idea of lazy inference is to al-
locate memory only for a small subset of “active” variables
and functions, and activate more if necessary as inference
proceeds. In addition to saving memory, this can reduce in-
ference time as well, for we do not allocate memory and
compute values for functions that are never used.

Definition 1 LetX be the set of variables andD be their do-
main.1 Thedefault valued∗ ∈ D is the most frequent value
of the variables. Anevidence variableis a variable whose
value is given and fixed. Afunctionf = f(z1, z2, · · · , zk)
inputszi’s, which are either variables or functions, and out-
puts some value in the range off .

In the rest of this paper, we focus on relational domains.
Variables are ground atoms, which take binary values (i.e.,
D = {true, false}). The default value for variables is false
(i.e., d∗ = false). Examples of functions are clauses and
DeltaCost. Like variables, functions may also have default
values (e.g., true for clauses). The inputs to a relational in-
ference algorithm are a weighted KB and a set of evidence
atoms (DB). Eager algorithms work by first carrying out
propositionalization and then calling a propositional algo-
rithm. In lazy inference, we directly work on the KB and
DB. The following concepts are crucial to lazy inference.

Definition 2 A variable v is active iff v is set to a non-
default value at some point, andx is inactive if the value
of x has always beend∗. A functionf is activatedby a vari-
ablev if eitherv is an input off , or v activates a functiong
that is an input off .

Basic Lazy Inference
LetA be the eager algorithm that we want to make lazy. We
make three assumptions aboutA:

1. A updates one variable at a time. (If not, the extension is
straightforward.)

2. The values of variables inA are properly encapsulated so
that they can be accessed by the rest of the algorithm only
via two methods: ReadVar(x) (which returns the value of
x) and WriteVar(x, v) (which sets the value ofx to v).
This is reasonable given the conventions in software de-
velopment, and if not, it is easy to implement.

3. A always sets values of the variables before calling a
function that depends on those variables, as it should be.

To develop the lazy version ofA, first, we identify the vari-
ables (usually all of them) and functions to make lazy. We
then modify the value-accessing methods and replace the
propositionalization step with lazy initialization as follows.
The rest of the algorithm remains the same.

ReadVar(x): If x is in memory, Lazy-A returns its value as
A; otherwise, it returnsd∗.

1For simplicity we assume that all variables have the same do-
main. The extension to different domains is straightforward.

WriteVar(x, v): If x is in memory, Lazy-A updates its
value asA. If not, and ifv = d∗, no action is taken; other-
wise, Lazy-A activates (allocates memory for)x and the
functions activated byx, and then sets the value.

Initialization: Lazy-A starts by allocating memory for
the lazy functions that output non-default values when
all variables assume the default values. It then calls
WriteVar() to set values for evidence variables, which
activates those evidence variables with non-default val-
ues and the functions they activate. Such variables be-
come the initial active variables and their values are fixed
throughout the inference.

For example, for WalkSAT, the functions to be made lazy
are the clauses, and Lazy-WalkSAT initializes by activat-
ing true evidence atoms and initial unsatisfied clauses (i.e.,
they are unsatisfied when the true evidence atoms are set to
true and all other atoms are set to false). While computing
DeltaCost(v), if v is active, the relevant clauses are already
in memory; otherwise, they will be activated whenv is set
to true (a necessary step before computing the cost change
whenv is set to true). Lazy-A carries out the same inference
steps asA and produces the same result. It never allocates
memory for more variables/functions thanA, but each ac-
cess incurs slightly more overhead (in checking whether a
variable or function is in memory). In the worst case, most
variables are updated, and Lazy-A produces little savings.
However, if the updates are sparse, as is the case for most al-
gorithms in relational domains, Lazy-A can greatly reduce
memory and time because it activates and computes the val-
ues for many fewer variables and functions.

This basic version of lazy inference is generally applica-
ble, but it does not exploit the characteristics of the algo-
rithm and may yield little savings in some cases. Next, we
describe three refinements that apply to many algorithms.
We then discuss implementation issues.

Refinements
Function activation: To find the functions activated by a

variablev, the basic version includes all functions that
depend onv by traversing the dependency graph of vari-
ables/functions, starting fromv. This can be done very ef-
ficiently, but may include functions whose values remain
the default even ifv changes its value. A more intelligent
approach traverses the graph and only returns functions
whose values become non-default ifv changes its value.
In general, this requires evaluating the functions, which
can be expensive, but for some functions (e.g., clauses),
it can be done efficiently as described at the end of this
section. Which approach to use depends on the function.

Variable recycling: In the basic version, a variable is ac-
tivated once it is set to a non-default value, and so are
the functions activated by the variable. This is necessary
if the variable keeps the non-default value, but could be
wasteful in algorithms where many such updates are tem-
porary (e.g., in simulated annealing and MCMC, we may
temporarily set a variable to true to compute the probabil-
ity for flipping). To save memory, if an inactive variable
considered for flipping is not flipped in the end, we can

discard it along with the functions activated by it. How-
ever, this will increase inference time if the variable is
considered again later, so we should only apply this if we
want to trade off time for memory, or if the variable is
unlikely to be considered again.

Smart randomization: Many local-search and MCMC al-
gorithms use randomization to set initial values for vari-
ables, or to choose the next variable to update. This is
usually done without taking the sparsity of relational do-
mains into account. For example, WalkSAT assigns ran-
dom initial values to all variables; in a sparse domain
where most atoms should be false, this is wasteful, be-
cause we will need to flip many atoms back to false. In
lazy inference, we can randomize in a better way by fo-
cusing more on the active atoms and those “nearby”, since
they are more likely to become true. Formally, a variable
w is a1-neighborof a variablev if w is an input of a func-
tion f activated byv; w is ak-neighborof v (k > 1) if
w is a(k − 1)-neighbor ofv, or if w is a 1-neighbor of a
(k−1)-neighbor ofv. For initialization, we only random-
ize thek-neighbors of initial active variables; for variable
selection, we also favor such variables.2 k can be used to
trade off efficiency and solution quality. With largek, this
is just the same as before. The smallerk is, the more time
and memory we can save from reducing the number of
activation. However, we also run the risk of missing some
relevant variables. If the domain is sparse, as typical rela-
tional domains are, the risk is negligible, and empirically
we have observed thatk = 1 greatly improves efficiency
without sacrificing solution quality.

Implementation Details
We describe two issues in implementation and show how we
address them. The first is how to obtain a random ground
atom. In lazy inference, most atoms are not in memory, so
we pick an atom in two steps: first pick the predicate with
probability proportional to its number of groundings, then
ground each argument of the predicate to a random constant
of its type. Another key operation in lazy inference is finding
the clauses activated by an atom. We use a general inverted-
index scheme to facilitate this. For each evidence predicate
that appears as a negative (positive) literal in a clause, we
create an index to map the constants in each argument to
the true (false) groundings. We illustrate how this works by
considering the clause¬R(x, y)∨ ¬S(z, y)∨ T(x, z), where
R(A, B) is the atom in question andS and T are evidence
predicates. To find the groundings of this clause activated
by R(A, B), we groundz by taking the intersection of the
true groundings ofS(z, B) and false groundings ofT(A, z),
which are available from the indices.

Lazy Inference Algorithms
Lazy WalkSAT
As evident from the previous section, the Lazy-WalkSAT
algorithm (LazySAT for short) is easily derived using our

2This does not preclude activation of remote relevant variables,
which can happen after their clauses are active, or by randomse-
lection (e.g., in simulated annealing).

Algorithm 1 MC-SAT(clauses, weights, numsamples)

x(0) ← Satisfy(hardclauses)
for i← 1 to numsamplesdo

M ← ∅
for all ck ∈ clausessatisfied byx(i−1) do

With probability1− e−wk addck to M
end for
Samplex(i) ∼ USAT (M)

end for

method by making clauses lazy and applying smart random-
ization with k = 1 to initialization. Singla & Domingos
(2006) showed that LazySAT greatly reduces memory usage
without sacrificing speed or solution quality.

Lazy DPLL
Basic DPLL (Daviset al. 1962) is a backtracking-based al-
gorithm for satisfiability testing. During propositionaliza-
tion, DPLL activates all clauses. If there is a unit clause, it
sets its atom to satisfy the clause and then calls itself; if there
is a pure literal, it sets it to satisfy the clauses it is in andthen
calls itself; otherwise, it picks an atom and sets it to true and
calls itself; if this does not lead to a satisfying solution,it
backtracks, sets the atom to false, and calls itself again.

In Lazy-DPLL, we make the clauses lazy and initialize by
activating the true evidence atoms and the initially unsatis-
fied clauses. When an inactive atomv is set to false, no ac-
tion is taken; whenv is set to true, Lazy-DPLL also activates
the clauses activated byv. Compared to DPLL, Lazy-DPLL
activates many fewer clauses and reduces both memory and
time. Note that modern implementations of DPLL also use
various heuristics (e.g., MOMS), and an interesting problem
for future research is adapting them for lazy inference.

Lazy Gibbs Sampling
Gibbs sampling initializes with a random state and repeat-
edly samples each atom according to its conditional prob-
ability given other atoms’ values. For each query atom, it
keeps a counter of how many times the atom is set to true. In
Lazy-Gibbs, we make clauses and counters lazy and initial-
ize by activating true evidence atoms and initial unsatisfied
clauses. When an inactive atomv is set to false, no action
is taken; whenv is set to true, Lazy-Gibbs also activates the
counter forv and the clauses activated byv. Both variable
recycling and smart randomization are applicable here.

There are two ways to pick the next atom to sample in
Gibbs sampling: cycling through all atoms in turn, or ran-
domly picking one. The random approach usually performs
better, and the atoms need not be picked uniformly. Lazy in-
ference yields little savings for the cycling approach. Forthe
random approach, however, it activates many fewer atoms,
clauses, and counters, and reduces both memory and time.

Lazy MC-SAT
Relational domains often contain strong dependencies (e.g.,
transitivity), which result in slow convergence for MCMC
algorithms; in the limit of deterministic dependencies, these
methods are trapped in a single region and never converge to

the correct answers. MC-SAT (Poon & Domingos 2006) is
a slice sampling(Damienet al. 1999) algorithm that over-
comes this problem by introducing auxiliary variables to
capture the dependencies. Algorithm 1 gives pseudo-code
for MC-SAT. It initializes with a solution to all hard clauses
found by WalkSAT. At each iteration, it generates a set of
clausesM by sampling from the currently satisfied clauses
according to their weights. It then calls SampleSAT (Weiet
al. 2004) to select the next state by sampling near-uniformly
the solutions toM . SampleSAT initializes with a random
state, and at each iteration, performs a simulated annealing
step with probabilityp and a WalkSAT step with probability
1−p. To improve efficiency, MC-SAT runs unit propagation
(i.e., repeatedly fixes atoms in unit clauses and simplifies the
remaining clauses) inM before calling SampleSAT. MC-
SAT is orders of magnitude faster than previous MCMC al-
gorithms such as Gibbs sampling and simulated tempering.

At first sight, MC-SAT does not seem like a suitable can-
didate for lazy inference. However, deriving Lazy-MC-SAT
becomes straightforward using our method. Here, the func-
tions to be made lazy are clauses, clauses’ memberships in
M , and whether an atom is fixed by unit propagation. Effec-
tively, Lazy-MC-SAT initializes by calling LazySAT to find
a solution to all hard clauses. At each iteration, it computes
M -memberships for and runs unit propagation among ac-
tive clauses only. It then calls Lazy-SampleSAT, the lazy
version of SampleSAT. Lazy-SampleSAT initializes using
smart randomization withk = 1. When an inactive atomv
is set to false, no action is taken. When it is set to true, Lazy-
SampleSAT activatesv and the clauses activated byv; it then
computesM -memberships for these clauses,3 and runs unit
propagation among them; ifv is fixed to false by unit prop-
agation, Lazy-SampleSAT setsv back to false and applies
variable recycling. It also applies variable recycling to sim-
ulated annealing steps. Notice that, when an M-membership
or fixed-atom flag is set, this is remembered until the current
run of Lazy-SampleSAT ends, to avoid inconsistencies.

Experiments
Domains

Information extraction(IE) is the problem of extracting
database records from text or semi-structured sources. Two
key components of IE aresegmentation(locating candi-
date database fields) andentity resolution(identifying du-
plicate records and fields). We used the CiteSeer and Cora
datasets from Poon & Domingos (2007), which contain
1593 and 1295 citations, respectively. The goal is to com-
pute marginal probabilities of fields and equalities. For both
datasets, we used the learned MLNs from Poon & Domin-
gos (2007), and added the transitivity rule:∀x, y, z x =
y ∧ y = z ⇒ x = z. This rule is used in anad hocfashion
in most entity resolution systems, and greatly complicates
inference. Moreover, its arity of three leads to an explosion
in memory and time, and as a result, MC-SAT cannot handle
this rule given the full datasets. In CiteSeer, the total num-

3These clauses must be previously satisfied for otherwise they
would have been activated before.

1.6*109

1.2*109

8.0*108

4.0*108

 0
 1600 1200 800 400 0

M
em

or
y

(b
yt

es
)

Lazy-MC-SAT
MC-SAT

3.0*109

2.0*109

1.0*109

0
 1250 1000 750 500 250 0

M
em

or
y

(b
yt

es
)

Lazy-MC-SAT
MC-SAT

1.5*109

1.0*109

5.0*108

 0
 400 300 200 100 0

M
em

or
y

(b
yt

es
)

No. Objects

Lazy-MC-SAT
MC-SAT

Figure 1: Memory usage vs. number of objects in CiteSeer
(top), Cora (middle), and UW-CSE (bottom).

bers of ground atoms and clauses are about 1 million and 3.2
billion, respectively; in Cora, 0.9 million and 1.8 billion.

Link prediction is the problem of identifying binary re-
lations among objects. This has numerous applications in
social network analysis, biology, etc. We used the UW-
CSE dataset and the hand-coded KB from Richardson &
Domingos (2006). The published dataset contains infor-
mation about 402 faculty and students in UW-CSE. The
goal is to compute marginal probabilities of advising rela-
tions. The highest clause arity is three, for clauses such as
¬TempAdvisedBy(s, p) ∨ ¬AdvisedBy(s, q) (which says
that a student cannot have both temporary and formal ad-
visors at the same time, a true statement at UW-CSE). The
total numbers of ground atoms and clauses are about 0.3 mil-

6.4*104

4.8*104

3.2*104

1.6*104

 0
 1600 1200 800 400 0

T
im

e
(s

ec
on

ds
)

Lazy-MC-SAT
MC-SAT

1.5*105

1.0*105

5.0*104

 0
 1250 1000 750 500 250 0

T
im

e
(s

ec
on

ds
)

Lazy-MC-SAT
MC-SAT

4.8*104

3.2*104

1.6*104

 0
 400 300 200 100 0

T
im

e
(s

ec
on

ds
)

No. Objects

Lazy-MC-SAT
MC-SAT

Figure 2: Inference time vs. number of objects in CiteSeer
(top), Cora (middle), and UW-CSE (bottom).

lion and 0.1 billion, respectively.

Methodology
We implemented Lazy-MC-SAT as an extension of the
Alchemy system (Koket al. 2007), and used the existing
MC-SAT implementation. We used the default values in
Alchemy for all parameters. Ideally, we would run MC-SAT
and Lazy-MC-SAT until convergence. However, it is very
difficult to diagnose convergence. Instead, we ran the algo-
rithms for both 1000 steps and 10,000 steps, and observed
similar solution quality. We report the results for 10,000
steps. Each experiment was conducted on a cluster node
with 3 GB of RAM and two processors running at 2.8 GHz.

Since the two algorithms produce the same results, we do

Table 1: Polynomial exponents and extrapolation.

Memory CiteSeer Cora UW-CSE
Eager 2.51 2.74 2.60
Lazy 0.85 1.66 0.99

Savings 2.0 · 108 5041 31
Time CiteSeer Cora UW-CSE
Eager 2.84 2.88 2.79
Lazy 1.00 1.89 1.98

Speed-Up 1.9 · 109 5072 26

not report solution quality. In all three datasets, we varied
the number of objects from 50 up to the full size in incre-
ments of 50, generated three random subsets for each num-
ber of objects except the full size,4 and report the averages.
In UW-CSE, we excluded a few rules with existential quanti-
fiers, for Alchemy will convert them into large disjunctions.
This is not a major limitation of lazy inference, for most
statistical relational representations do not have existentials,
and we can handle existentials lazily by partially grounding
the clauses (i.e, we ground a partial disjunction using only
active atoms, and extend it when more atoms are activated).
We will implement this extension in the future.

Results

The results are shown in Figures 1 and 2. The memory
and time savings obtained by Lazy-MC-SAT grow rapidly
with the number of objects. Lazy-MC-SAT is able to han-
dle all full datasets, whereas MC-SAT runs out of memory
with 250 objects in CiteSeer and Cora, and with 200 in UW-
CSE. To extrapolate beyond them, we fitted the function
f(x) = axb to all curves, and extrapolated it to the sizes of
the complete CiteSeer database (over 4.5 million), the com-
plete Cora database (over 50,000) and UW-CSE (402). Table
1 shows the exponentb’s and the estimated factors of mem-
ory and time reduction. The memory and time used by Lazy-
MC-SAT grow linearly in CiteSeer, and sub-quadratically in
Cora and UW-CSE, whereas that by MC-SAT grow closer to
cubically. Lazy-MC-SAT’s speed-up results mainly from the
lazy computation ofM -memberships. It also grounds many
fewer atoms/clauses, and makes fewer flips. For example,
for a Cora dataset with 200 citations, MC-SAT spends 17
hours in total, among which 14 hours are spent in computing
memberships inM , 6 minutes in grounding atoms/clauses
(8.1 million groundings), and 2.5 hours in SampleSAT (1.8
million flips). In comparison, Lazy-MC-SAT spends 45
minutes in total, among which 6 minutes in computing mem-
berships inM , 7 seconds in grounding atoms/clauses (0.2
million groundings), and 38 minutes in SampleSAT (0.4 mil-
lion flips). Overall, the reduction of memory and time by
Lazy-MC-SAT is very large, e.g., for the complete CiteSeer
database, Lazy-MC-SAT reduces memory by eight orders of
magnitude, and reduces time by nine orders of magnitude.

4In all domains, we preserved the natural clusters (corefering
citations in CiteSeer and Cora, people in the same research area in
UW-CSE) as much as possible.

Conclusion
We proposed a general method for lazy inference and ap-
plied it to various algorithms. Experiments on real-world
domains show that Lazy-MC-SAT, one of the resulting algo-
rithms, reduces memory and time by orders of magnitude.

Directions for future work include applying lazy inference
to other algorithms, combining lazy inference with lifted in-
ference, applying it to learning, etc.

Acknowledgements
We thank the anonymous reviewers for their comments. This
research was funded by DARPA contracts NBCH-D030010/02-
000225, FA8750-07-D-0185, and HR0011-07-C-0060, DARPA
grant FA8750-05-2-0283, NSF grant IIS-0534881, and ONR grant
N-00014-05-1-0313. The views and conclusions contained inthis
document are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or
implied, of DARPA, NSF, ONR, or the U.S. Government.

References
Bakir, G.; Hofmann, T.; Schölkopf, B.; Smola, A.; Taskar, B. and
Vishwanathan, S. (eds.) 2007.Predicting Structured Data. MIT
Press.
Braz, R.; Amir, E. and Roth, D. 2006. MPE and partial inversion
in lifted probabilistic variable elimination. InProc. AAAI-06.
Damien, P.; Wakefield, J. and Walker, S. 1999. Gibbs sampling
for Bayesian non-conjugate and hierarchical models by auxiliary
variables.Journal of the Royal Statistical SocietyB 61(2).
Davis, M.; Logemann, G. and Loveland, D. 1962. A machine
program for theorem proving.Communications of the ACM5(7).
Genesereth, M. and Nilsson, N. 1987.Logical Foundations of
Artificial Intelligence. Morgan Kaufmann.
Getoor, L.; Friedman, N.; Koller, D. and Taskar, B. 2001. Learn-
ing probabilistic models of relational structure.In Proc. ICML-01.
Getoor, L. & Taskar, B., eds. 2007.Introduction to Statistical
Relational Learning. MIT Press.
Kautz, H.; Selman, B.; and Jiang, Y. 1997. A general stochastic
approach to solving problems with hard and soft constraints. In
The Satisfiability Problem: Theory and Applications. AMS.
Kok, S.; Singla, P.; Richardson, M.; Domingos, P.; Sumner, M.
and Poon, H. 2007. The Alchemy system for statistical relational
AI. http://alchemy.cs.washington.edu/.
Milch, B. and Russell, S. 2006. General-purpose MCMC infer-
ence over relational structures. InProc. UAI-06.
Poon, H. and Domingos, P. 2006. Sound and efficient inference
with probabilistic and deterministic dependencies. InProc. AAAI-
06.
Poon, H. and Domingos, P. 2007. Joint inference in information
extraction. InProc. AAAI-07.
Richardson, M. and Domingos, P. 2006. Markov logic networks.
Machine Learning62(1-2).
Selman, B.; Kautz, H.; and Cohen, B. 1996. Local search strate-
gies for satisfiability testing. InCliques, Coloring, and Satisfia-
bility: Second DIMACS Implementation Challenge. AMS.
Singla, P. and Domingos, P. 2006. Memory-efficient inference in
relational domains. InProc. AAAI-06.
Wei, W.; Erenrich, J. and Selman, B. 2004. Towards efficient
sampling: Exploiting random walk strategies. InProc. AAAI-04.

